
Table of Contents

Getting Started
 Install Software
 Connect USB
 Setting up MakeItC
 Running the SampleC program
 MakeItC features
 Trouble Shooting

The Compiler
 About
 C Dialect options
 ARM options
 Precompiled Headers
 C Implementation
 C externsions
 License
 Notices

Com Functions
 getc
 gets
 printf
 putchar
 puts
 sprintf

Hardware Library
 Pin Controls
 Function List
 Time Functions
 Alphabetical Keyword List

Hardware Specs
 Hardware Specs

Tables
 ASCII Character Codes

Support
 How to contact the developers
 How to report a bug
 Contributors

Page 1

http://www.coridiumcorp.com/ARMmite.php
http://www.coridiumcorp.com/ARMexpress.php

Getting Started

Getting Started
 Install Software
 Connect USB
 Setting up MakeItC
 Running the Sample C program
 MakeItC Features
 Trouble Shooting

Page 2

http://www.coridiumcorp.com

Step 1: Install Software
The ARMexpress or ARMmite have a built in BASIC Compiler or Library. When the C compiler is used to
download a program it will overlay these BASIC components, so you WILL NOT be able to run BASIC after
downloading a C program.

The GCC compiler runs on the PC and is controlled by the Tcl program MakeItC. MakeItC launches a text
editor of your choice, analyses sources, compiles the C components, links them into a hex file, downloads
the hex file to the hardware, and communicates with the ARMexpress or ARMmite with the TclTerm terminal
emulation program.

Also, a number of help files and documents about the ARMexpress and ARMmite will be installed on the
machine at this time.

 Click next to get started.

Page 3

 If you wish to change the directory into which MakeIt and its components will be installed you may do so
here.

While the installer does give you a choice of where to install the C compiler, this version of Yagarto GCC
requires both the gcc AND the sources you want to be compiled to be on the C: drive.

 Select next to continue.

Page 4

 Click Install to begin installing files.

 One moment please...

Page 5

 And its as easy as that.

On to Step 2

Page 6

Step 2: Connect USB
Connect USB Cable to ARMmite/ARMexpress Eval PCB

The ARMmite / ARMexpress Eval Kit comes with a USB cable. This cable allows you to connect the
ARMmite/ARMexpress directly to a computer equipped with USB. Locate the USB jack on the side of the
Eval PCB and plug one end of the USB cable into it. When connected to a PC power is supplied by the PC,
the optional power connection is not required, but both may be safely connected.

To connect an ARMmite PRO refer to this page.

Connect USB Cable to Computer

Locate the USB jack on your computer and plug the other end of
the cable into it.

Please Consult Installation Guides

Page 7

Most PC's will sound a tone that indicates a new USB device has been connected. Most Windows Vista
and 7 systems will either include the FTDI device driver or are able to download it automatically from the
network.

If your system is unable to do that. Run the FTDI driver installation setup in the \Program
Files\Coridium\Windows_drivers directory. This will install the proper drivers for the FTDI chips we use for
interfacing to the USB.

Up to date details are at the www.ftdichip.com VCP drivers page.

From here it should be a simple matter of following the dialog instructions.

Driver Installation Complete, Confirm USB Connection

The Eval PCB or the ARMmite will be powered from the USB bus. It may also be connected to a 7-12V DC
power source simultaneously.

To verify connection with the USB and PC the LED on the Eval PCB should light up.

On to Step 3

Page 8

http://www.ftdichip.com

Step 2: Connect USB on ARMmite PRO
Connect Coridium USB Dongle to ARMmite PRO

The ARMmite PRO Eval Kit comes with a USB dongle and cable. This dongle and cable allows you to
connect the ARMmite PRO directly to a computer equipped with USB. When connected to a PC power is
supplied by the PC, the optional power connection is not required, but both may be safely connected.

The USB dongle from Cordium allows you to download C programs WITHOUT installing jumpers or pushing
buttons.

Connect FTDI cable to ARMmite PRO

Connect the black wire to GND.

Picture shows the 2 pins that must be jumpered to load a C program, a 2 pin header and a jumper block can
be used without soldering it into the PCB (illustrated below)

Page 9

Connect SparkFun USB Dongle to ARMmite PRO

The SparkFun USB Dongle does not control the RTS line so the C jumper must also be installed to download
a C program.

Connect USB Cable to Computer

Locate the USB jack on your computer and plug the other end of the cable into it.

Please Consult Installation Guides

Page 10

Most PC's will sound a tone that indicates a new USB device has been connected. Most Windows Vista
and 7 systems will either include the FTDI device driver or are able to download it automatically from the
network.

If your system is unable to do that. Run the FTDI driver installation setup in the \Program
Files\Coridium\Windows_drivers directory. This will install the proper drivers for the FTDI chips we use for
interfacing to the USB.

Up to date details are at the www.ftdichip.com VCP drivers page.

Driver Installation Complete, Confirm USB Connection

The Eval PCB or the ARMmite will be powered from the USB bus. It may also be connected to a 5-12V DC
power source simultaneously.

To verify connection with the USB and PC the LED on the Eval PCB should light up.

On to Step 3

Page 11

http://www.ftdichip.com

Step 3: Setting up MakeItC
Setup Your Text Editor

Before you really get started you should probably set up the text editor. We assume you have a favorite one,
we like the Crimson Editor these days. We also don't believe our tools should force you to learn a new text
editor.

But if you don't choose one, the good old Notepad will be used.

At this point MakeItC will ask to navigate to the .exe or .bat file that launches the text editor.

Choosing the main source file

Now its time to choose a source.c file. This source file will typically contain the main() function.

For example you could start with the Csample.c program in the examples directory

Page 12

Setting the parameters

Before compiling and loading the program, a couple options need to be set. First is which type of board is to
be loaded (ARMmite or ARMexpress).

Then if you want to download and run the program, check the serial port configuration. MakeItC will use the
first FTDI-USB device found, or the last port you had assigned.

Ports that are in CAPS are recognized as USB-serial devices like the ARMmite. Ports listed as lower case
are not USB-serial devices.

Page 13

Now the MakeItC can compile and launch the sample program.

On to Step 4

Page 14

Step 4: Running the Sample C Program
Compile load and run the program

compiling the code

loading the code

Page 15

and starting the program

A program that uses IO

The program is now running. This example program communicates with the PC, so to really execute it open
a TclTerm window using the tools>terminal menu to communicate with the program

Page 16

The Csample program will execute a number of routines, some of which require additional hardware (such as
I2C or SPI devices). Some of the examples will modulate the LED on the PCB. One of those that flashes the
LED is option 5, type that in the box to the right of Enter:

Page 17

And see the results

Try some of the other options, refer to the Csample source for details.

More Details on MakeItC

Page 18

MakeItC Features
Choose a File

MakeItC assumes that your project can be built completely from your file that includes the main() routine.
Any header files will opened and examined for other header files. Any header file that has a corresponding C
source file will be added to the list of files to compile. If there is no C source, but an object .o file, that object
will be added to list of files to link. In all cases the header and associated file need to be in the same
directory, and that directory does not need to be in the directory of the file containing the main(), but it does
need to be in the include path (see below). This process is similar to the make process, but is automated
and simplified.

Edit Menu

Page 19

keyw ords: ASM assembly edit search

Search Window

Tools Menu

Page 20

keyw ords: tools build reload terminal hex run

 Any file compiled whose name contains ISR, will disable the compiler optimizations. The normal
optimization level is -Os (see gcc doc's for details). Code is also compiled to allow links interworking with
thumb code.

 All compiled files will also generate an assembly listing including the C source, this .lst file may aid in
debugging. To see a better version of all source and corresponding assembly language use the option in the
Edit menu. The memory map will be saved in a file with the suffix .map.

Options Menu

Page 21

keyw ords: choose editor serial port target PCB compile include linker extra options restore defaults

Page 22

Page 23

Page 24

Step 6: Trouble Shooting
Check your cables, check the LED

See Connect USB All Coridium boards have an Green LED that is driven when power is applied. If that
LED is not on, check you connection, or using the Schematics trace the power connections.

Determining which COM port should be used

The tools will query the Window registry and will list the available COM ports. If you are using a Coridium
USB dongle, a Coridium card with built in USB connection, a SparkFun USB dongle or a FTDI USB cable;
then those COM ports will be listed in capital letters. Those in lower case are NOT using a Coridium dongle
or built in USB port, do not select those. If you are using some other serial connection, refer to the section
on ISP checks .

In the example above, COM5 is a Coridium board, com1 and com2 are serial ports built into the PC.

You can also identify an FTDI port using the Device Manager.

Open the Control Panel>System>Device Manager

Page 25

USB(COMx not appearing)

 If the USB Serial Port does not appear, check the connection and if its still not there install the driver.

Open the /Program Files(x86)/Coridium/Windows Drivers folder. Run the .exe file in that folder. This will
install the FTDI driver. The FTDI FT232RL is the USB device we use on the Coridium USB dongle.

Offline indicator

 This will be shown if the port you were using last time the program was run is no longer available. You
must reselect a Port using the Option Menu to reestablish communication with the ARM. Make sure any
other copies of MakeItC or BASICtools are closed, as you can not open a port simultaneously with more than
one program.

Page 26

Reset ARM shows no message

If your C program does not appear to start up, go back to sample.c to make sure that is working.

Does your C program initialize the UART0 correctly (other UARTs connect to different pins and require other
connections to monitor their ouputs).

Check Baud Rate

Or you might not have the correct baud rate selected. Make sure it is set to 19200 baud. Baud settings in
the Device Manager do NOT affect the MakeItc or BASICtools.

Page 27

Check ARM connection

TclTerm has some tools to verify a connection to the ARM chip.

The connection test will use the Coridium USB dongle or built in USB connection to place the ARM into ISP
mode (holds P0.14, P2.10 or P0.1 low during RESET, depending on the part -- details in the corresponding
NXP User manual). Then a ? will be sent followed by "Synchronized". If an appropriate answer is received a
command to ID the part will be sent and that will be reported --

Page 28

Or if no part is found

If no part is found go back check the connection, power connections, or which port has been selected.

Page 29

The Compiler

The Compiler
 About
 C Dialect options
 ARM options
 Precompiled Headers
 C Implementation
 C externsions
 License
 Notices

Page 30

http://www.coridiumcorp.com

This file documents the use of the GNU compilers.

Copyright © 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004, 2005 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation;
with the Invariant Sections being “GNU General Public License” and “Funding Free Software”, the
Front-Cover texts being (a) (see below), and with the Back-Cover Texts being (b) (see below). A copy
of the license is included in the section entitled “GNU Free Documentation License”.

(a) The FSF's Front-Cover Text is:

A GNU Manual

(b) The FSF's Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies published by the
Free Software Foundation raise funds for GNU development.

Also thanks to Georges Menie (www.menie.org) for providing an GPL version of printf that is relatively
small and tailored for the embedded environment.

Short Contents
 Introduction
 1 Programming Languages Supported by GCC
 2 Language Standards Supported by GCC
 3 GCC Command Options
 4 C Implementation-defined behavior
 5 Extensions to the C Language Family
 6 Extensions to the C++ Language
 7 GNU Objective-C runtime features
 8 Binary Compatibility
 9 gcov—a Test Coverage Program
 10 Known Causes of Trouble with GCC
 11 Reporting Bugs
 12 How To Get Help with GCC
 13 Contributing to GCC Development
 Funding Free Software
 The GNU Project and GNU/Linux
 GNU GENERAL PUBLIC LICENSE
 GNU Free Documentation License
 Contributors to GCC
 Option Index
 Keyword Index

Table of Contents
 Introduction
 1 Programming Languages Supported by GCC
 2 Language Standards Supported by GCC
 3 GCC Command Options

Page 31

http://www.menie.org)

o 3.1 Option Summary
o 3.2 Options Controlling the Kind of Output
o 3.3 Compiling C++ Programs
o 3.4 Options Controlling C Dialect
o 3.5 Options Controlling C++ Dialect
o 3.6 Options Controlling Objective-C and Objective-C++ Dialects
o 3.7 Options to Control Diagnostic Messages Formatting
o 3.8 Options to Request or Suppress Warnings
o 3.9 Options for Debugging Your Program or GCC
o 3.10 Options That Control Optimization
o 3.11 Options Controlling the Preprocessor
o 3.12 Passing Options to the Assembler
o 3.13 Options for Linking
o 3.14 Options for Directory Search
o 3.15 Specifying subprocesses and the switches to pass to them
o 3.16 Specifying Target Machine and Compiler Version
o 3.17 Hardware Models and Configurations

 3.17.1 ARC Options
 3.17.2 ARM Options
 3.17.3 AVR Options
 3.17.4 Blackfin Options
 3.17.5 CRIS Options
 3.17.6 CRX Options
 3.17.7 Darwin Options
 3.17.8 DEC Alpha Options
 3.17.9 DEC Alpha/VMS Options
 3.17.10 FRV Options
 3.17.11 H8/300 Options
 3.17.12 HPPA Options
 3.17.13 Intel 386 and AMD x86-64 Options
 3.17.14 IA-64 Options
 3.17.15 M32C Options
 3.17.16 M32R/D Options
 3.17.17 M680x0 Options
 3.17.18 M68hc1x Options
 3.17.19 MCore Options
 3.17.20 MIPS Options
 3.17.21 MMIX Options
 3.17.22 MN10300 Options
 3.17.23 MT Options
 3.17.24 PDP-11 Options
 3.17.25 PowerPC Options
 3.17.26 IBM RS/6000 and PowerPC Options
 3.17.27 S/390 and zSeries Options
 3.17.28 SH Options
 3.17.29 SPARC Options
 3.17.30 Options for System V
 3.17.31 TMS320C3x/C4x Options
 3.17.32 V850 Options
 3.17.33 VAX Options
 3.17.34 x86-64 Options

Page 32

 3.17.35 Xstormy16 Options
 3.17.36 Xtensa Options
 3.17.37 zSeries Options

o 3.18 Options for Code Generation Conventions
o 3.19 Environment Variables Affecting GCC
o 3.20 Using Precompiled Headers
o 3.21 Running Protoize

 4 C Implementation-defined behavior
o 4.1 Translation
o 4.2 Environment
o 4.3 Identifiers
o 4.4 Characters
o 4.5 Integers
o 4.6 Floating point
o 4.7 Arrays and pointers
o 4.8 Hints
o 4.9 Structures, unions, enumerations, and bit-fields
o 4.10 Qualifiers
o 4.11 Declarators
o 4.12 Statements
o 4.13 Preprocessing directives
o 4.14 Library functions
o 4.15 Architecture
o 4.16 Locale-specific behavior

 5 Extensions to the C Language Family
o 5.1 Statements and Declarations in Expressions
o 5.2 Locally Declared Labels
o 5.3 Labels as Values
o 5.4 Nested Functions
o 5.5 Constructing Function Calls
o 5.6 Referring to a Type with typeof
o 5.7 Conditionals with Omitted Operands
o 5.8 Double-Word Integers
o 5.9 Complex Numbers
o 5.10 Hex Floats
o 5.11 Arrays of Length Zero
o 5.12 Structures With No Members
o 5.13 Arrays of Variable Length
o 5.14 Macros with a Variable Number of Arguments.
o 5.15 Slightly Looser Rules for Escaped Newlines
o 5.16 Non-Lvalue Arrays May Have Subscripts
o 5.17 Arithmetic on void- and Function-Pointers
o 5.18 Non-Constant Initializers
o 5.19 Compound Literals
o 5.20 Designated Initializers
o 5.21 Case Ranges
o 5.22 Cast to a Union Type
o 5.23 Mixed Declarations and Code
o 5.24 Declaring Attributes of Functions
o 5.25 Attribute Syntax
o 5.26 Prototypes and Old-Style Function Definitions

Page 33

o 5.27 C++ Style Comments
o 5.28 Dollar Signs in Identifier Names
o 5.29 The Character <ESC> in Constants
o 5.30 Inquiring on Alignment of Types or Variables
o 5.31 Specifying Attributes of Variables

 5.31.1 M32R/D Variable Attributes
 5.31.2 i386 Variable Attributes
 5.31.3 Xstormy16 Variable Attributes

o 5.32 Specifying Attributes of Types
 5.32.1 ARM Type Attributes
 5.32.2 i386 Type Attributes

o 5.33 An Inline Function is As Fast As a Macro
o 5.34 Assembler Instructions with C Expression Operands

 5.34.1 Size of an asm
 5.34.2 i386 floating point asm operands

o 5.35 Constraints for asm Operands
 5.35.1 Simple Constraints
 5.35.2 Multiple Alternative Constraints
 5.35.3 Constraint Modifier Characters
 5.35.4 Constraints for Particular Machines

o 5.36 Controlling Names Used in Assembler Code
o 5.37 Variables in Specified Registers

 5.37.1 Defining Global Register Variables
 5.37.2 Specifying Registers for Local Variables

o 5.38 Alternate Keywords
o 5.39 Incomplete enum Types
o 5.40 Function Names as Strings
o 5.41 Getting the Return or Frame Address of a Function
o 5.42 Using vector instructions through built-in functions
o 5.43 Offsetof
o 5.44 Built-in functions for atomic memory access
o 5.45 Object Size Checking Builtins
o 5.46 Other built-in functions provided by GCC
o 5.47 Built-in Functions Specific to Particular Target Machines

 5.47.1 Alpha Built-in Functions
 5.47.2 ARM Built-in Functions
 5.47.3 Blackfin Built-in Functions
 5.47.4 FR-V Built-in Functions

 5.47.4.1 Argument Types
 5.47.4.2 Directly-mapped Integer Functions
 5.47.4.3 Directly-mapped Media Functions
 5.47.4.4 Raw read/write Functions
 5.47.4.5 Other Built-in Functions

 5.47.5 X86 Built-in Functions
 5.47.6 MIPS DSP Built-in Functions
 5.47.7 MIPS Paired-Single Support

 5.47.7.1 Paired-Single Arithmetic
 5.47.7.2 Paired-Single Built-in Functions
 5.47.7.3 MIPS-3D Built-in Functions

 5.47.8 PowerPC AltiVec Built-in Functions
 5.47.9 SPARC VIS Built-in Functions

Page 34

o 5.48 Format Checks Specific to Particular Target Machines
 5.48.1 Solaris Format Checks

o 5.49 Pragmas Accepted by GCC
 5.49.1 ARM Pragmas
 5.49.2 M32C Pragmas
 5.49.3 RS/6000 and PowerPC Pragmas
 5.49.4 Darwin Pragmas
 5.49.5 Solaris Pragmas
 5.49.6 Symbol-Renaming Pragmas
 5.49.7 Structure-Packing Pragmas
 5.49.8 Weak Pragmas

o 5.50 Unnamed struct/union fields within structs/unions
o 5.51 Thread-Local Storage

 5.51.1 ISO/IEC 9899:1999 Edits for Thread-Local Storage
 5.51.2 ISO/IEC 14882:1998 Edits for Thread-Local Storage

 6 Extensions to the C++ Language
o 6.1 When is a Volatile Object Accessed?
o 6.2 Restricting Pointer Aliasing
o 6.3 Vague Linkage
o 6.4 #pragma interface and implementation
o 6.5 Where's the Template?
o 6.6 Extracting the function pointer from a bound pointer to member function
o 6.7 C++-Specific Variable, Function, and Type Attributes
o 6.8 Strong Using
o 6.9 Java Exceptions
o 6.10 Deprecated Features
o 6.11 Backwards Compatibility

 7 GNU Objective-C runtime features
o 7.1 +load: Executing code before main

 7.1.1 What you can and what you cannot do in +load
o 7.2 Type encoding
o 7.3 Garbage Collection
o 7.4 Constant string objects
o 7.5 compatibility_alias

 8 Binary Compatibility
 9 gcov—a Test Coverage Program

o 9.1 Introduction to gcov
o 9.2 Invoking gcov
o 9.3 Using gcov with GCC Optimization
o 9.4 Brief description of gcov data files
o 9.5 Data file relocation to support cross-profiling

 10 Known Causes of Trouble with GCC
o 10.1 Actual Bugs We Haven't Fixed Yet
o 10.2 Cross-Compiler Problems
o 10.3 Interoperation
o 10.4 Incompatibilities of GCC
o 10.5 Fixed Header Files
o 10.6 Standard Libraries
o 10.7 Disappointments and Misunderstandings
o 10.8 Common Misunderstandings with GNU C++

 10.8.1 Declare and Define Static Members

Page 35

 10.8.2 Name lookup, templates, and accessing members of base classes
 10.8.3 Temporaries May Vanish Before You Expect
 10.8.4 Implicit Copy-Assignment for Virtual Bases

o 10.9 Caveats of using protoize
o 10.10 Certain Changes We Don't Want to Make
o 10.11 Warning Messages and Error Messages

 11 Reporting Bugs
o 11.1 Have You Found a Bug?
o 11.2 How and where to Report Bugs

 12 How To Get Help with GCC
 13 Contributing to GCC Development
 Funding Free Software
 The GNU Project and GNU/Linux
 GNU GENERAL PUBLIC LICENSE

o Preamble
o Appendix: How to Apply These Terms to Your New Programs

 GNU Free Documentation License
o ADDENDUM: How to use this License for your documents

 Contributors to GCC
 Option Index
 Keyword Index

Next: G++ and GCC, Up: (DIR)

Introduction
This manual documents how to use the GNU compilers, as well as their features and incompatibilities,
and how to report bugs. It corresponds to GCC version 4.1.1. The internals of the GNU compilers,
including how to port them to new targets and some information about how to write front ends for new
languages, are documented in a separate manual. See Introduction.

 G++ and GCC: You can compile C or C++ programs.
 Standards: Language standards supported by GCC.
 Invoking GCC: Command options supported by `gcc'.
 C Implementation: How GCC implements the ISO C specification.
 C Extensions: GNU extensions to the C language family.
 C++ Extensions: GNU extensions to the C++ language.
 Objective-C: GNU Objective-C runtime features.
 Compatibility: Binary Compatibility
 Gcov: gcov---a test coverage program.
 Trouble: If you have trouble using GCC.
 Bugs: How, why and where to report bugs.
 Service: How to find suppliers of support for GCC.
 Contributing: How to contribute to testing and developing GCC.
 Funding: How to help assure funding for free software.
 GNU Project: The GNU Project and GNU/Linux.
 Copying: GNU General Public License says how you can copy and share GCC.
 GNU Free Documentation License: How you can copy and share this manual.
 Contributors: People who have contributed to GCC.
 Option Index: Index to command line options.
 Keyword Index: Index of concepts and symbol names.

Page 36

Next: C++ Dialect Options, Previous: Invoking G++, Up: Invoking GCC

3.4 Options Controlling C Dialect

The following options control the dialect of C (or languages derived from C, such as C++, Objective-C
and Objective-C++) that the compiler accepts:
-ansi

In C mode, support all ISO C90 programs. In C++ mode, remove GNU extensions that conflict
with ISO C++.
This turns off certain features of GCC that are incompatible with ISO C90 (when compiling C
code), or of standard C++ (when compiling C++ code), such as the asm and typeof keywords,
and predefined macros such as unix and vax that identify the type of system you are using. It
also enables the undesirable and rarely used ISO trigraph feature. For the C compiler, it disables
recognition of C++ style `//' comments as well as the inline keyword.

The alternate keywords __asm__, __extension__, __inline__ and __typeof__ continue to
work despite -ansi. You would not want to use them in an ISO C program, of course, but it
is useful to put them in header files that might be included in compilations done with -ansi.
Alternate predefined macros such as __unix__ and __vax__ are also available, with or without
-ansi.

The -ansi option does not cause non-ISO programs to be rejected gratuitously. For that,
-pedantic is required in addition to -ansi. See Warning Options.

The macro __STRICT_ANSI__ is predefined when the -ansi option is used. Some header
files may notice this macro and refrain from declaring certain functions or defining certain macros
that the ISO standard doesn't call for; this is to avoid interfering with any programs that might use
these names for other things.

Functions which would normally be built in but do not have semantics defined by ISO C (such
as alloca and ffs) are not built-in functions with -ansi is used. See Other built-in functions
provided by GCC, for details of the functions affected.

-std=

Determine the language standard. This option is currently only supported when compiling C or
C++. A value for this option must be provided; possible values are
`c89'
`iso9899:1990'
ISO C90 (same as -ansi).
`iso9899:199409'
ISO C90 as modified in amendment 1.
`c99'
`c9x'
`iso9899:1999'
`iso9899:199x'
ISO C99. Note that this standard is not yet fully supported; see
http://gcc.gnu.org/gcc-4.1/c99status.html for more information. The names `c9x' and `
iso9899:199x' are deprecated.
`gnu89'
Default, ISO C90 plus GNU extensions (including some C99 features).
`gnu99'
`gnu9x'

Page 37

http://gcc.gnu.org/gcc-4.1/c99status.html
http://gcc.gnu.org/gcc-4.1/c99status.html

ISO C99 plus GNU extensions. When ISO C99 is fully implemented in GCC, this will become
the default. The name `gnu9x' is deprecated.
`c++98'
The 1998 ISO C++ standard plus amendments.
`gnu++98'
The same as -std=c++98 plus GNU extensions. This is the default for C++ code.
Even when this option is not specified, you can still use some of the features of newer standards
in so far as they do not conflict with previous C standards. For example, you may use
__restrict__ even when -std=c99 is not specified.

The -std options specifying some version of ISO C have the same effects as -ansi, except
that features that were not in ISO C90 but are in the specified version (for example, `//'
comments and the inline keyword in ISO C99) are not disabled.

See Language Standards Supported by GCC, for details of these standard versions.
-aux-info filename

Output to the given filename prototyped declarations for all functions declared and/or defined in a
translation unit, including those in header files. This option is silently ignored in any language other
than C.
Besides declarations, the file indicates, in comments, the origin of each declaration (source file
and line), whether the declaration was implicit, prototyped or unprototyped (`I', `N' for new or `
O' for old, respectively, in the first character after the line number and the colon), and whether it
came from a declaration or a definition (`C' or `F', respectively, in the following character). In the
case of function definitions, a K&R-style list of arguments followed by their declarations is also
provided, inside comments, after the declaration.

-fno-asm

Do not recognize asm, inline or typeof as a keyword, so that code can use these words as
identifiers. You can use the keywords __asm__, __inline__ and __typeof__ instead.
-ansi implies -fno-asm.
In C++, this switch only affects the typeof keyword, since asm and inline are standard
keywords. You may want to use the -fno-gnu-keywords flag instead, which has the
same effect. In C99 mode (-std=c99 or -std=gnu99), this switch only affects the asm
and typeof keywords, since inline is a standard keyword in ISO C99.

-fno-builtin

-fno-builtin-function
Don't recognize built-in functions that do not begin with `__builtin_' as prefix. See Other
built-in functions provided by GCC, for details of the functions affected, including those which
are not built-in functions when -ansi or -std options for strict ISO C conformance are used
because they do not have an ISO standard meaning.
GCC normally generates special code to handle certain built-in functions more efficiently; for
instance, calls to alloca may become single instructions that adjust the stack directly, and calls
to memcpy may become inline copy loops. The resulting code is often both smaller and faster, but
since the function calls no longer appear as such, you cannot set a breakpoint on those calls, nor
can you change the behavior of the functions by linking with a different library. In addition, when
a function is recognized as a built-in function, GCC may use information about that function to
warn about problems with calls to that function, or to generate more efficient code, even if the
resulting code still contains calls to that function. For example, warnings are given with
-Wformat for bad calls to printf, when printf is built in, and strlen is known not to
modify global memory.

Page 38

With the -fno-builtin-function option only the built-in function function is
disabled. function must not begin with `__builtin_'. If a function is named this is not
built-in in this version of GCC, this option is ignored. There is no corresponding -fbuiltin-
function option; if you wish to enable built-in functions selectively when using
-fno-builtin or -ffreestanding, you may define macros such as:
 #define abs(n) __builtin_abs ((n))

 #define strcpy(d, s) __builtin_strcpy ((d), (s))

-fhosted

Assert that compilation takes place in a hosted environment. This implies -fbuiltin. A
hosted environment is one in which the entire standard library is available, and in which main has
a return type of int. Examples are nearly everything except a kernel. This is equivalent to
-fno-freestanding.

-ffreestanding

Assert that compilation takes place in a freestanding environment. This implies
-fno-builtin. A freestanding environment is one in which the standard library may not
exist, and program startup may not necessarily be at main. The most obvious example is an OS
kernel. This is equivalent to -fno-hosted.
See Language Standards Supported by GCC, for details of freestanding and hosted
environments.

-fms-extensions

Accept some non-standard constructs used in Microsoft header files.
Some cases of unnamed fields in structures and unions are only accepted with this option. See
Unnamed struct/union fields within structs/unions, for details.

-trigraphs

Support ISO C trigraphs. The -ansi option (and -std options for strict ISO C
conformance) implies -trigraphs.

-no-integrated-cpp

Performs a compilation in two passes: preprocessing and compiling. This option allows a user
supplied "cc1", "cc1plus", or "cc1obj" via the -B option. The user supplied compilation step can
then add in an additional preprocessing step after normal preprocessing but before compiling.
The default is to use the integrated cpp (internal cpp)
The semantics of this option will change if "cc1", "cc1plus", and "cc1obj" are merged.

-traditional

-traditional-cpp

Formerly, these options caused GCC to attempt to emulate a pre-standard C compiler. They are
now only supported with the -E switch. The preprocessor continues to support a pre-standard
mode. See the GNU CPP manual for details.

-fcond-mismatch

Allow conditional expressions with mismatched types in the second and third arguments. The
value of such an expression is void. This option is not supported for C++.

-funsigned-char

Let the type char be unsigned, like unsigned char.
Each kind of machine has a default for what char should be. It is either like unsigned char by
default or like signed char by default.

Page 39

Ideally, a portable program should always use signed char or unsigned char when it
depends on the signedness of an object. But many programs have been written to use plain char
and expect it to be signed, or expect it to be unsigned, depending on the machines they were
written for. This option, and its inverse, let you make such a program work with the opposite
default.

The type char is always a distinct type from each of signed char or unsigned char, even
though its behavior is always just like one of those two.

-fsigned-char

Let the type char be signed, like signed char.
Note that this is equivalent to -fno-unsigned-char, which is the negative form of
-funsigned-char. Likewise, the option -fno-signed-char is equivalent to
-funsigned-char.

-fsigned-bitfields

-funsigned-bitfields

-fno-signed-bitfields

-fno-unsigned-bitfields

These options control whether a bit-field is signed or unsigned, when the declaration does not use
either signed or unsigned. By default, such a bit-field is signed, because this is consistent: the
basic integer types such as int are signed types.

Page 40

Next: AVR Options, Previous: ARC Options, Up: Submodel Options

3.17.2 ARM Options

These `-m' options are defined for Advanced RISC Machines (ARM) architectures:
-mabi=name

Generate code for the specified ABI. Permissible values are: `apcs-gnu', `atpcs', `aapcs
', `aapcs-linux' and `iwmmxt'.

-mapcs-frame

Generate a stack frame that is compliant with the ARM Procedure Call Standard for all
functions, even if this is not strictly necessary for correct execution of the code. Specifying
-fomit-frame-pointer with this option will cause the stack frames not to be generated
for leaf functions. The default is -mno-apcs-frame.

-mapcs

This is a synonym for -mapcs-frame.
-mthumb-interwork

Generate code which supports calling between the ARM and Thumb instruction sets. Without
this option the two instruction sets cannot be reliably used inside one program. The default is
-mno-thumb-interwork, since slightly larger code is generated when
-mthumb-interwork is specified.

-mno-sched-prolog

Prevent the reordering of instructions in the function prolog, or the merging of those instruction
with the instructions in the function's body. This means that all functions will start with a
recognizable set of instructions (or in fact one of a choice from a small set of different function
prologues), and this information can be used to locate the start if functions inside an executable
piece of code. The default is -msched-prolog.

-mhard-float

Generate output containing floating point instructions. This is the default.
-msoft-float

Generate output containing library calls for floating point. Warning: the requisite libraries are not
available for all ARM targets. Normally the facilities of the machine's usual C compiler are used,
but this cannot be done directly in cross-compilation. You must make your own arrangements to
provide suitable library functions for cross-compilation.
-msoft-float changes the calling convention in the output file; therefore, it is only useful if
you compile all of a program with this option. In particular, you need to compile libgcc.a,
the library that comes with GCC, with -msoft-float in order for this to work.

-mfloat-abi=name
Specifies which ABI to use for floating point values. Permissible values are: `soft', `softfp'
and `hard'.
`soft' and `hard' are equivalent to -msoft-float and -mhard-float respectively.
`softfp' allows the generation of floating point instructions, but still uses the soft-float calling
conventions.

-mlittle-endian

Generate code for a processor running in little-endian mode. This is the default for all standard
configurations.

-mbig-endian

Generate code for a processor running in big-endian mode; the default is to compile code for a
little-endian processor.

-mwords-little-endian

This option only applies when generating code for big-endian processors. Generate code for a

Page 41

little-endian word order but a big-endian byte order. That is, a byte order of the form `
32107654'. Note: this option should only be used if you require compatibility with code for
big-endian ARM processors generated by versions of the compiler prior to 2.8.

-mcpu=name
This specifies the name of the target ARM processor. GCC uses this name to determine what
kind of instructions it can emit when generating assembly code. Permissible names are: `arm2', `
arm250', `arm3', `arm6', `arm60', `arm600', `arm610', `arm620', `arm7', `
arm7m', `arm7d', `arm7dm', `arm7di', `arm7dmi', `arm70', `arm700', `arm700i
', `arm710', `arm710c', `arm7100', `arm7500', `arm7500fe', `arm7tdmi', `
arm7tdmi-s', `arm8', `strongarm', `strongarm110', `strongarm1100', `
arm8', `arm810', `arm9', `arm9e', `arm920', `arm920t', `arm922t', `
arm946e-s', `arm966e-s', `arm968e-s', `arm926ej-s', `arm940t', `
arm9tdmi', `arm10tdmi', `arm1020t', `arm1026ej-s', `arm10e', `arm1020e
', `arm1022e', `arm1136j-s', `arm1136jf-s', `mpcore', `mpcorenovfp', `
arm1176jz-s', `arm1176jzf-s', `xscale', `iwmmxt', `ep9312'.

-mtune=name
This option is very similar to the -mcpu= option, except that instead of specifying the actual
target processor type, and hence restricting which instructions can be used, it specifies that GCC
should tune the performance of the code as if the target were of the type specified in this option,
but still choosing the instructions that it will generate based on the cpu specified by a -mcpu=
option. For some ARM implementations better performance can be obtained by using this
option.

-march=name
This specifies the name of the target ARM architecture. GCC uses this name to determine what
kind of instructions it can emit when generating assembly code. This option can be used in
conjunction with or instead of the -mcpu= option. Permissible names are: `armv2', `
armv2a', `armv3', `armv3m', `armv4', `armv4t', `armv5', `armv5t', `armv5te',
`armv6', `armv6j', `iwmmxt', `ep9312'.

-mfpu=name
-mfpe=number
-mfp=number

This specifies what floating point hardware (or hardware emulation) is available on the target.
Permissible names are: `fpa', `fpe2', `fpe3', `maverick', `vfp'. -mfp and -mfpe are
synonyms for -mfpu=`fpe'number, for compatibility with older versions of GCC.
If -msoft-float is specified this specifies the format of floating point values.

-mstructure-size-boundary=n
The size of all structures and unions will be rounded up to a multiple of the number of bits set by
this option. Permissible values are 8, 32 and 64. The default value varies for different toolchains.
For the COFF targeted toolchain the default value is 8. A value of 64 is only allowed if the
underlying ABI supports it.
Specifying the larger number can produce faster, more efficient code, but can also increase the
size of the program. Different values are potentially incompatible. Code compiled with one value
cannot necessarily expect to work with code or libraries compiled with another value, if they
exchange information using structures or unions.

-mabort-on-noreturn

Generate a call to the function abort at the end of a noreturn function. It will be executed if the
function tries to return.

-mlong-calls

-mno-long-calls

Tells the compiler to perform function calls by first loading the address of the function into a

Page 42

register and then performing a subroutine call on this register. This switch is needed if the target
function will lie outside of the 64 megabyte addressing range of the offset based version of
subroutine call instruction.
Even if this switch is enabled, not all function calls will be turned into long calls. The heuristic is
that static functions, functions which have the `short-call' attribute, functions that are inside
the scope of a `#pragma no_long_calls' directive and functions whose definitions
have already been compiled within the current compilation unit, will not be turned into long calls.
The exception to this rule is that weak function definitions, functions with the `long-call'
attribute or the `section' attribute, and functions that are within the scope of a `#pragma
long_calls' directive, will always be turned into long calls.

This feature is not enabled by default. Specifying -mno-long-calls will restore the default
behavior, as will placing the function calls within the scope of a `#pragma
long_calls_off' directive. Note these switches have no effect on how the compiler
generates code to handle function calls via function pointers.

-mnop-fun-dllimport

Disable support for the dllimport attribute.
-msingle-pic-base

Treat the register used for PIC addressing as read-only, rather than loading it in the prologue for
each function. The run-time system is responsible for initializing this register with an appropriate
value before execution begins.

-mpic-register=reg
Specify the register to be used for PIC addressing. The default is R10 unless stack-checking is
enabled, when R9 is used.

-mcirrus-fix-invalid-insns

Insert NOPs into the instruction stream to in order to work around problems with invalid
Maverick instruction combinations. This option is only valid if the -mcpu=ep9312 option has
been used to enable generation of instructions for the Cirrus Maverick floating point
co-processor. This option is not enabled by default, since the problem is only present in older
Maverick implementations. The default can be re-enabled by use of the
-mno-cirrus-fix-invalid-insns switch.

-mpoke-function-name

Write the name of each function into the text section, directly preceding the function prologue.
The generated code is similar to this:
 t0

 .ascii "arm_poke_function_name", 0

 .align

 t1

 .word 0xff000000 + (t1 - t0)

 arm_poke_function_name

 mov ip, sp

 stmfd sp!, {fp, ip, lr, pc}

 sub fp, ip, #4

When performing a stack backtrace, code can inspect the value of pc stored at fp + 0. If the
trace function then looks at location pc - 12 and the top 8 bits are set, then we know that there
is a function name embedded immediately preceding this location and has length ((pc[-3]) &
0xff000000).

-mthumb

Generate code for the 16-bit Thumb instruction set. The default is to use the 32-bit ARM
instruction set.

-mtpcs-frame

Page 43

Generate a stack frame that is compliant with the Thumb Procedure Call Standard for all non-leaf
functions. (A leaf function is one that does not call any other functions.) The default is
-mno-tpcs-frame.

-mtpcs-leaf-frame

Generate a stack frame that is compliant with the Thumb Procedure Call Standard for all leaf
functions. (A leaf function is one that does not call any other functions.) The default is
-mno-apcs-leaf-frame.

-mcallee-super-interworking

Gives all externally visible functions in the file being compiled an ARM instruction set header
which switches to Thumb mode before executing the rest of the function. This allows these
functions to be called from non-interworking code.

-mcaller-super-interworking

Allows calls via function pointers (including virtual functions) to execute correctly regardless of
whether the target code has been compiled for interworking or not. There is a small overhead in
the cost of executing a function pointer if this option is enabled.

-mtp=name
Specify the access model for the thread local storage pointer. The valid models are soft, which
generates calls to __aeabi_read_tp, cp15, which fetches the thread pointer from cp15
directly (supported in the arm6k architecture), and auto, which uses the best available method
for the selected processor. The default setting is auto.

Page 44

Next: Running Protoize, Previous: Environment Variables, Up: Invoking GCC

3.20 Using Precompiled Headers

Often large projects have many header files that are included in every source file. The time the compiler
takes to process these header files over and over again can account for nearly all of the time required to
build the project. To make builds faster, GCC allows users to `precompile' a header file; then, if builds
can use the precompiled header file they will be much faster.

To create a precompiled header file, simply compile it as you would any other file, if necessary using the
-x option to make the driver treat it as a C or C++ header file. You will probably want to use a tool
like make to keep the precompiled header up-to-date when the headers it contains change.

A precompiled header file will be searched for when #include is seen in the compilation. As it searches
for the included file (see Search Path) the compiler looks for a precompiled header in each directory just
before it looks for the include file in that directory. The name searched for is the name specified in the
#include with `.gch' appended. If the precompiled header file can't be used, it is ignored.

For instance, if you have #include "all.h", and you have all.h.gch in the same directory as
all.h, then the precompiled header file will be used if possible, and the original header will be used
otherwise.

Alternatively, you might decide to put the precompiled header file in a directory and use -I to ensure
that directory is searched before (or instead of) the directory containing the original header. Then, if you
want to check that the precompiled header file is always used, you can put a file of the same name as the
original header in this directory containing an #error command.

This also works with -include. So yet another way to use precompiled headers, good for projects
not designed with precompiled header files in mind, is to simply take most of the header files used by a
project, include them from another header file, precompile that header file, and -include the
precompiled header. If the header files have guards against multiple inclusion, they will be skipped
because they've already been included (in the precompiled header).

If you need to precompile the same header file for different languages, targets, or compiler options, you
can instead make a directory named like all.h.gch, and put each precompiled header in the
directory, perhaps using -o. It doesn't matter what you call the files in the directory, every precompiled
header in the directory will be considered. The first precompiled header encountered in the directory that
is valid for this compilation will be used; they're searched in no particular order.

There are many other possibilities, limited only by your imagination, good sense, and the constraints of
your build system.

A precompiled header file can be used only when these conditions apply:

 Only one precompiled header can be used in a particular compilation.
 A precompiled header can't be used once the first C token is seen. You can have preprocessor

directives before a precompiled header; you can even include a precompiled header from inside
another header, so long as there are no C tokens before the #include.

 The precompiled header file must be produced for the same language as the current compilation.
You can't use a C precompiled header for a C++ compilation.

 The precompiled header file must have been produced by the same compiler binary as the
current compilation is using.

 Any macros defined before the precompiled header is included must either be defined in the

Page 45

same way as when the precompiled header was generated, or must not affect the precompiled
header, which usually means that they don't appear in the precompiled header at all.
The -D option is one way to define a macro before a precompiled header is included; using a
#define can also do it. There are also some options that define macros implicitly, like -O and
-Wdeprecated; the same rule applies to macros defined this way.

 If debugging information is output when using the precompiled header, using -g or similar, the
same kind of debugging information must have been output when building the precompiled
header. However, a precompiled header built using -g can be used in a compilation when no
debugging information is being output.

 The same -m options must generally be used when building and using the precompiled header.
See Submodel Options, for any cases where this rule is relaxed.

 Each of the following options must be the same when building and using the precompiled header:
 -fexceptions -funit-at-a-time

 Some other command-line options starting with -f, -p, or -O must be defined in the same way
as when the precompiled header was generated. At present, it's not clear which options are safe
to change and which are not; the safest choice is to use exactly the same options when generating
and using the precompiled header. The following are known to be safe:

 -fmessage-length= -fpreprocessed

 -fsched-interblock -fsched-spec -fsched-spec-load

-fsched-spec-load-dangerous

 -fsched-verbose=<number> -fschedule-insns -fvisibility=

 -pedantic-errors

For all of these except the last, the compiler will automatically ignore the precompiled header if the
conditions aren't met. If you find an option combination that doesn't work and doesn't cause the
precompiled header to be ignored, please consider filing a bug report, see Bugs.

If you do use differing options when generating and using the precompiled header, the actual behavior will
be a mixture of the behavior for the options. For instance, if you use -g to generate the precompiled
header but not when using it, you may or may not get debugging information for routines in the
precompiled header.

Page 46

Next: C Extensions, Previous: Invoking GCC, Up: Top

4 C Implementation-defined behavior
A conforming implementation of ISO C is required to document its choice of behavior in each of the
areas that are designated “implementation defined”. The following lists all such areas, along with the
section numbers from the ISO/IEC 9899:1990 and ISO/IEC 9899:1999 standards. Some areas are only
implementation-defined in one version of the standard.

Some choices depend on the externally determined ABI for the platform (including standard character
encodings) which GCC follows; these are listed as “determined by ABI” below. See Binary
Compatibility, and http://gcc.gnu.org/readings.html. Some choices are documented in the preprocessor
manual. See Implementation-defined behavior. Some choices are made by the library and operating
system (or other environment when compiling for a freestanding environment); refer to their
documentation for details.

 Translation implementation
 Environment implementation
 Identifiers implementation
 Characters implementation
 Integers implementation
 Floating point implementation
 Arrays and pointers implementation
 Hints implementation
 Structures unions enumerations and bit-fields implementation
 Qualifiers implementation
 Declarators implementation
 Statements implementation
 Preprocessing directives implementation
 Library functions implementation
 Architecture implementation
 Locale-specific behavior implementation

Page 47

http://gcc.gnu.org/readings.html
http://gcc.gnu.org/readings.html

Next: C++ Extensions, Previous: C Implementation, Up: Top

5 Extensions to the C Language Family
GNU C provides several language features not found in ISO standard C. (The -pedantic option
directs GCC to print a warning message if any of these features is used.) To test for the availability of
these features in conditional compilation, check for a predefined macro __GNUC__, which is always
defined under GCC.

These extensions are available in C and Objective-C. Most of them are also available in C++. See
Extensions to the C++ Language, for extensions that apply only to C++.

Some features that are in ISO C99 but not C89 or C++ are also, as extensions, accepted by GCC in
C89 mode and in C++.

 Statement Exprs: Putting statements and declarations inside expressions.
 Local Labels: Labels local to a block.
 Labels as Values: Getting pointers to labels, and computed gotos.
 Nested Functions: As in Algol and Pascal, lexical scoping of functions.
 Constructing Calls: Dispatching a call to another function.
 Typeof: typeof: referring to the type of an expression.
 Conditionals: Omitting the middle operand of a `?:' expression.
 Long Long: Double-word integers---long long int.
 Complex: Data types for complex numbers.
 Hex Floats: Hexadecimal floating-point constants.
 Zero Length: Zero-length arrays.
 Variable Length: Arrays whose length is computed at run time.
 Empty Structures: Structures with no members.
 Variadic Macros: Macros with a variable number of arguments.
 Escaped Newlines: Slightly looser rules for escaped newlines.
 Subscripting: Any array can be subscripted, even if not an lvalue.
 Pointer Arith: Arithmetic on void-pointers and function pointers.
 Initializers: Non-constant initializers.
 Compound Literals: Compound literals give structures, unions or arrays as values.
 Designated Inits: Labeling elements of initializers.
 Cast to Union: Casting to union type from any member of the union.
 Case Ranges: `case 1 ... 9' and such.
 Mixed Declarations: Mixing declarations and code.
 Function Attributes: Declaring that functions have no side effects, or that they can never return.
 Attribute Syntax: Formal syntax for attributes.
 Function Prototypes: Prototype declarations and old-style definitions.
 C++ Comments: C++ comments are recognized.
 Dollar Signs: Dollar sign is allowed in identifiers.
 Character Escapes: `\e' stands for the character <ESC>.
 Variable Attributes: Specifying attributes of variables.
 Type Attributes: Specifying attributes of types.
 Alignment: Inquiring about the alignment of a type or variable.
 Inline: Defining inline functions (as fast as macros).
 Extended Asm: Assembler instructions with C expressions as operands. (With them you can

define ``built-in'' functions.)
 Constraints: Constraints for asm operands

Page 48

 Asm Labels: Specifying the assembler name to use for a C symbol.
 Explicit Reg Vars: Defining variables residing in specified registers.
 Alternate Keywords: __const__, __asm__, etc., for header files.
 Incomplete Enums: enum foo;, with details to follow.
 Function Names: Printable strings which are the name of the current function.
 Return Address: Getting the return or frame address of a function.
 Vector Extensions: Using vector instructions through built-in functions.
 Offsetof: Special syntax for implementing offsetof.
 Atomic Builtins: Built-in functions for atomic memory access.
 Object Size Checking: Built-in functions for limited buffer overflow checking.
 Other Builtins: Other built-in functions.
 Target Builtins: Built-in functions specific to particular targets.
 Target Format Checks: Format checks specific to particular targets.
 Pragmas: Pragmas accepted by GCC.
 Unnamed Fields: Unnamed struct/union fields within structs/unions.
 Thread-Local: Per-thread variables.

Page 49

Next: GNU Free Documentation License, Previous: GNU Project, Up: Top

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

 Copyright © 1989, 1991 Free Software Foundation, Inc.
 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public License is intended to guarantee your freedom to share and change
free software—to make sure the software is free for all its users. This General Public License applies to
most of the Free Software Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by the GNU Library General Public
License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which
gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that
there is no warranty for this free software. If the software is modified by someone else and passed on,
we want its recipients to know that what they have is not the original, so that any problems introduced by
others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free
use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
1. This License applies to any program or other work which contains a notice placed by the

copyright holder saying it may be distributed under the terms of this General Public License. The
“Program”, below, refers to any such program or work, and a “work based on the Program”
means either the Program or any derivative work under copyright law: that is to say, a work
containing the Program or a portion of it, either verbatim or with modifications and/or translated
into another language. (Hereinafter, translation is included without limitation in the term

Page 50

“modification”.) Each licensee is addressed as “you”.
Activities other than copying, distribution and modification are not covered by this License; they
are outside its scope. The act of running the Program is not restricted, and the output from the
Program is covered only if its contents constitute a work based on the Program (independent of
having been made by running the Program). Whether that is true depends on what the Program
does.

2. You may copy and distribute verbatim copies of the Program's source code as you receive it, in
any medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to
this License and to the absence of any warranty; and give any other recipients of the Program a
copy of this License along with the Program.
You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

3. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms of
Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you changed the
files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part contains
or is derived from the Program or any part thereof, to be licensed as a whole at no
charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to print
or display an announcement including an appropriate copyright notice and a notice that
there is no warranty (or else, saying that you provide a warranty) and that users may
redistribute the program under these conditions, and telling the user how to view a copy
of this License. (Exception: if the Program itself is interactive but does not normally print
such an announcement, your work based on the Program is not required to print an
announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work
are not derived from the Program, and can be reasonably considered independent and separate
works in themselves, then this License, and its terms, do not apply to those sections when you
distribute them as separate works. But when you distribute the same sections as part of a whole
which is a work based on the Program, the distribution of the whole must be on the terms of this
License, whose permissions for other licensees extend to the entire whole, and thus to each and
every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or
with a work based on the Program) on a volume of a storage or distribution medium does not
bring the other work under the scope of this License.

4. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also do
one of the following:

a. Accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily

Page 51

used for software interchange; or,
b. Accompany it with a written offer, valid for at least three years, to give any third party,

for a charge no more than your cost of physically performing source distribution, a
complete machine-readable copy of the corresponding source code, to be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

c. Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable form with
such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it.
For an executable work, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control compilation
and installation of the executable. However, as a special exception, the source code distributed
need not include anything that is normally distributed (in either source or binary form) with the
major components (compiler, kernel, and so on) of the operating system on which the executable
runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not compelled to copy the source
along with the object code.

1. You may not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program
is void, and will automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their licenses terminated
so long as such parties remain in full compliance.

1. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions
are prohibited by law if you do not accept this License. Therefore, by modifying or distributing
the Program (or any work based on the Program), you indicate your acceptance of this License
to do so, and all its terms and conditions for copying, distributing or modifying the Program or
works based on it.

1. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions on
the recipients' exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

1. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be to refrain
entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under any particular circumstance,
the balance of the section is intended to apply and the section as a whole is intended to apply in

Page 52

other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is implemented by public license
practices. Many people have made generous contributions to the wide range of software
distributed through that system in reliance on consistent application of that system; it is up to the
author/donor to decide if he or she is willing to distribute software through any other system and
a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the
rest of this License.

1. If the distribution and/or use of the Program is restricted in certain countries either by patents or
by copyrighted interfaces, the original copyright holder who places the Program under this
License may add an explicit geographical distribution limitation excluding those countries, so that
distribution is permitted only in or among countries not thus excluded. In such case, this License
incorporates the limitation as if written in the body of this License.

1. The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies a version number
of this License which applies to it and “any later version”, you have the option of following the
terms and conditions either of that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this License, you may choose
any version ever published by the Free Software Foundation.

1. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the two goals of preserving
the free status of all derivatives of our free software and of promoting the sharing and reuse of
software generally.

NO WARRANTY
1. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO

WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

1. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY

Page 53

YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH
ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best
way to achieve this is to make it free software which everyone can redistribute and change under these
terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each
source file to most effectively convey the exclusion of warranty; and each file should have at least the
“copyright” line and a pointer to where the full notice is found.
 one line to give the program's name and a brief idea of what it does.

 Copyright (C) year name of author

 This program is free software; you can redistribute it and/or modify

 it under the terms of the GNU General Public License as published by

 the Free Software Foundation; either version 2 of the License, or

 (at your option) any later version.

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License

 along with this program; if not, write to the Free Software

 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA

02110-1301, USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:
 Gnomovision version 69, Copyright (C) year name of author

 Gnomovision comes with ABSOLUTELY NO WARRANTY; for details

 type `show w'.

 This is free software, and you are welcome to redistribute it

 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other than `show
w' and `show c'; they could even be mouse-clicks or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a
“copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:
 Yoyodyne, Inc., hereby disclaims all copyright interest in the program

 `Gnomovision' (which makes passes at compilers) written by James Hacker.

 signature of Ty Coon, 1 April 1989

 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If
your program is a subroutine library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the GNU Library General Public License
instead of this License.

Page 54

Runtime Objects

The hardware support libraries and objects are part of the ARMbasic© compiler. It is distributed as part of
hardware sold by Coridium Corp. such as the ARMexpress module and ARMmite single board computers.
Those objects may be used without restriction on Coridium hardware or hardware of Coridium's licensees.

All rights to the hardware support libraries are reserved under copyright to Coridium Corp. It may not be
copied or reverse engineered..

Page 55

Notices

 NO WARRANTY

 1. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY

APPLICABLE LAW. CORIDIUM PROVIDES THE PROGRAM "AS IS" WITHOUT WARRANTY

OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM

IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF

ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 2. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL CORIDIUM BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,

INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO

USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING

RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE

OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR

OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

 Windows® is a registered trademark of Microsoft Corporation.
 VisualBASIC® is a registered trademark of Microsoft Corporation.
 BASIC Stamp® is a registered trademark of Parallax, Inc.
 PBASIC™ is a trademark of Parallax, Inc.
 I2C® is a registered trademark of Philips Corporation.
 1-Wire® is a registered trademark of Maxim/Dallas Semiconductor.
 SPI™ is a trademark of Motorola

 Parts of this documentation are adapted from www.cppreference.com

 This documentation is released under the GFDL license.

Page 56

http://www.cppreference.com

MakeItC Operation
Looking for files

MakeItC assumes that your project can be built completely from your file that includes the main() routine.

Any header files will opened and examined for other header files.

Any header file that has a corresponding C source file will be added to the list of files to compile. If there is
no C source, but an object .o file, that object will be added to list of files to link.

In all cases the header and associated object or source file needs to be in the same directory, and that
directory does not need to be in the directory of the file containing the main(), but it does need to be in the
include path.

This process is similar to the make process, but is automated and simplified.

Page 57

Libraries

 Some simple input and output routines provide communication from the ARMmite/ARMexpress back to
the PC. These routines are normally available to GCC on other platforms.

 They have been adapted from the GCC sources or in some cases a simplified subset such as printf.

Com Functions
 getc
 gets
 printf
 putchar
 puts
 sprintf

String Convert Functions
 atoi
 atoh

Single Precision Math Functions
 float atanf
 float cosf
 float sinf
 float tanf
 float tanhf
 float frexpf
 float modff
 float ceilf
 float fabsf
 float floorf

Memory Functions
 memchr
 memcmp
 memcpy
 memmove
 memset

String Functions
 strcat
 strchr
 strcmp
 strcpy

Page 58

http://www.coridiumcorp.com

 strcspn
 strlen
 strncat
 strncmp
 strncpy
 strstr
 strrchr

cor_min_io Library
 getCh
 getStr
 printDec
 printHex
 printStr
 str2dec

Page 59

Communication Functions

 Some simple input and output routines provide communication from the ARMmite/ARMexpress back to
the PC. These routines are normally available to GCC on other platforms.

 They have been adapted from the GCC sources or in some cases a simplified subset as printf.

Com Functions
 getc
 gets
 printf
 putchar
 puts
 sprintf

Page 60

http://www.coridiumcorp.com

getc

Syntax

int getc (int UARTnum);

Description

getc(int UARTnum) will return a single character (0-255) if one is available in the input buffer form the
corresponding UART.

If no character is available then -1 is returned.

This routine unlike gets returns immediately whether a character is available or not.

Example

while (1) {
 ch = getc(0);
 if (ch != -1) break;
}

See also

 gets

Page 61

gets

Syntax

void gets(char *stringPointer);

Description

gets will accept a string from the USB port on the ARMmite or SIN on the ARMexpress.

The string will be saved into the stringPointer char array. A CR (carriage return) will terminate the string
and be replaced by a 0 (null) character will be returned in the array.

gets is implelmented using getline, with maxLen limiting the number of characters copied into
stringPointer. If that limit is hit, then the routine will return. This limit is set to 256, and may be changed
by the user in the coridium.h file

gets will wait for input indefinately.

Example

 while (1) {
 puts("enter option:");
 gets(instring);
 inval = atoi(instring);

 switch (inval) {
 case 1:

See also

 getc
 gets

Page 62

printf

Syntax

int printf (char * format, ...);

Description

printf will convert an arbitrary number of parameters and using the format string assign those into a string
and send them to the serial port (SOUT)

format may be a simple string in which case that string is printed

or it can contain parameters to be filled with values

 %c -- replace this with a single character

 %s -- replace this with a string

 %d -- replace with a decimal value

 %x -- replace with a hexadecimal value (%X upshifts A-F)

 %u -- replace with the unsigned decimal value

In addition there are modifiers to further control the output string

 %#d -- where # indicates how many characters will be used to represent the value -- in this case the
value is right justified and blank filled

 %0#x -- in this case the number is right justified but 0 filled for # total spaces

 %-#s -- this left justifies the string and fills the right side with spaces

NOTE:- the printf.c library generates 2 warnings on "dereferencing type-punned pointer will
break strict-aliasing rules"

In 2012 floating point support has been added to printf, but it is not the default case as it
adds 4K to the code. To enable floating point support, printf.c must be compiled with
USE_FLOAT defined, which can be done by adding #define USE_FLOAT into the
printf.h source or it can be done by adding the User Compile option in MakeItC
-DUSE_FLOAT

Example

printf ("1234asdf"); // will display 1234asdf

printf ("%c", 0x31); // will display 1

printf ("%d", 1); // will display 1

printf ("%9d", 1); // will display " 1"

Page 63

printf ("%-9d", 1); // will display "1 "

printf ("%09d", 1); // will display "0000000001"

printf ("%9s", "1"); // will display " 1"

See also

 putchar
 puts

Page 64

putchar

Syntax

int putchar (char c, int UARTnum);

Description

putchar will send a single character to the PC via SOUT.

putchar returns the character sent in form of an integer.

Example

putchar (0x31, 0); // will display 1 to UART0 -- connected to the PC USB port

See also

 printf
 puts

Page 65

puts

Syntax

int puts(char * string);

Description

puts send a single string to the PC via SOUT, followed by the newline character.

puts returns -1 on error, otherwise the last character printed

Example

puts("%c 0x31"); // will display %c 0x31

See also

 printf
 putchar

Page 66

sprintf

Syntax

int sprintf (char *returnStr, char * format, ...);

Description

This routine will generate a formated string using parametric input.

The returnStr will be set to this formatted string, and the number of characters in that string are returned.

For format string details, see printf .

In 2012 floating point support has been added to printf, but it is not the default case as it
adds 4K to the code. To enable floating point support, printf.c must be compiled with
USE_FLOAT defined, which can be done by adding #define USE_FLOAT into the
printf.h source or it can be done by adding the User Compile option in MakeItC
-DUSE_FLOAT

Example

sprintf (s, "x = %d", 33); // will return x=33 in the string s

See also

 printf
 putchar
 puts

Page 67

Math Libraries

 These libraries have been adapted from the standard set.

 included with #include <math.h>

Single Precision Math Functions
 atanf
 cosf
 sinf
 tanf
 tanhf
 frexpf
 modff
 ceilf
 fabsf
 floorf

Page 68

http://www.coridiumcorp.com

atanf

Syntax

#include <math.h>

float atanf(float arg);

The function atan() returns the arc tangent of arg, which will be

in the range [-pi/2, +pi/2].

Related topics:
 cosf
 sinf
 tanf

Page 69

ceilf

Syntax

#include <math.h>

float ceilf(float num);

The ceilf() function returns the smallest integer no less than

num. For example,

 y = 6.04;

 x = ceil(y);

would set x to 7.0.

Related topics:
floor
fmod

Page 70

http://www.cppreference.com/stdmath/floor.html
http://www.cppreference.com/stdmath/fmod.html

cosf

Syntax

#include <math.h>

float cosf(float arg);

The cos() function returns the cosine of arg, where arg is

expressed in radians. The return value of cos() is in the range

[-1,1]. If arg is infinite, cos() will return NAN and raise a

floating-point exception.

Related topics:
 cosf
 sinf
 tanf

Page 71

fabsf

Syntax

#include <math.h>

float fabsf(float arg);

The function fabsf() returns the absolute value of arg.

Related topics:
abs
fmod

Page 72

http://www.cppreference.com/stdmath/abs.html
http://www.cppreference.com/stdmath/fmod.html

floorf

Syntax

#include <math.h>

float floorf(float arg);

The function floorf() returns the largest integer not greater

than arg. For example,

 y = 6.04;

 x = floorf(y);

would result in x being set to 6.0.

Related topics:
ceil
fmod

Page 73

http://www.cppreference.com/stdmath/ceil.html
http://www.cppreference.com/stdmath/fmod.html

frexpf

Syntax

#include <math.h>

float frexpf(float num, int* exp);

The function frexpf() is used to decompose num into two parts:

a mantissa between 0.5 and 1 (returned by the function) and an

exponent returned as exp. Scientific notation works like this:

 num = mantissa * (2 ^ exp)

Related topics:
ldexp
modf

Page 74

http://www.cppreference.com/stdmath/ldexp.html
http://www.cppreference.com/stdmath/modf.html

modf

Syntax

#include <math.h>

float modf(float num, float *i);

The function modf() splits num into its integer and fraction

parts. It returns the fractional part and loads the integer

part into i.

Related topics:
frexp
ldexp

Page 75

http://www.cppreference.com/stdmath/frexp.html
http://www.cppreference.com/stdmath/ldexp.html

sinf

Syntax

#include <math.h>

float sin(float arg);

The function sin() returns the sine of arg, where arg is given

in radians. The return value of sin() will be in the range

[-1,1]. If arg is infinite, sin() will return NAN and raise a

floating-point exception.

Related topics:
 cosf
 sinf
 tanf

Page 76

tanf

Syntax

#include <math.h>

float tanf(float arg);

The tanf() function returns the tangent of arg, where arg is given

in radians. If arg is infinite, tan() will return NAN and raise a

floating-point exception.

Related topics:
 cosf
 sinf
 tanf

Page 77

tanhf

Syntax

#include <math.h>

float tanhf(float arg);

 The function tanh() returns the hyperbolic tangent of arg .

Related topics:
 cosf
 sinf
 tanf

Page 78

mem Libraries

 These libraries have been adapted from the standard set.

 included with #include "mem.h"

Memory Functions
 memchr
 memcmp
 memcpy
 memmove
 memset

Page 79

http://www.coridiumcorp.com

memchr

Syntax

#include "mem.h"

void *memchr(const void *buffer, int ch, unsigned int count);

The memchr() function looks for the first occurrence of ch within count characters in the array pointed to
by buffer. The return value points to the location of the first occurrence of ch, or NULL if ch isn't found.
For example:
 char names[] = "Alan Bob Chris X Dave";

 if(memchr(names,'X',strlen(names)) == NULL)
 printf("Didn't find an X\n");
 else
 printf("Found an X\n");
Related topics:
 memcmp
 memcpy
 strstr

Page 80

memcmp

Syntax

#include "mem.h"

int memcmp(const void *buffer1, const void *buffer2, unsigned int count);

The function memcmp() compares the first count characters of buffer1 and

buffer2 .

The return values are as follows:

Value Explanation
less than 0 buffer1 is less than buffer2
equal to 0 buffer1 is equal to buffer2
greater than 0 buffer1 is greater than buffer2

Related topics:
 memchr
 memcpy
 memset
 strcmp

Page 81

memcpy

Syntax

#include "mem.h"

void *memcpy(void *to, const void *from, unsigned int count);

The function memcpy() copies count characters from the array from to the

array to.

The return value of memcpy() is to. The behavior of memcpy() is undefined

if to and from overlap.

Related topics:
 memchr
 memcmp
 memmove
 memset
 strcpy
 strlen
 strncpy

Page 82

memmove

Syntax

#include "mem.h"

void *memmove(void *to, const void *from, unsigned int count);

The memmove() function is identical to memcpy(), except that it works even

if to and from overlap.

Related topics:
 memcpy
 memset

Page 83

memset

Syntax

#include "mem.h"

 void* memset(void* buffer, int ch, unsigned int count);

The function memset() copies ch into the first count characters of buffer,

and returns buffer.

memset() is useful for intializing a section of memory to some value. For

example, this command:

 const int ARRAY_LENGTH;

 char the_array[ARRAY_LENGTH];
 ...
 // zero out the contents of the_array
 memset(the_array, '\0', ARRAY_LENGTH);

...is a very efficient way to set all values of the_array to zero.

Related topics:
 memcmp
 memcpy
 memmove

Page 84

string Libraries

 These libraries have been adapted from the standard set where possible or from subsets as is the case
with printf.

 included with #include "string.h"

String Functions
 strcat
 strchr
 strcmp
 strcpy
 strcspn
 strlen
 strncat
 strncmp
 strncpy
 strstr
 strrchr
 islower
 isupper
 toupper
 tolower

Page 85

http://www.coridiumcorp.com

islower

Syntax

#include "string.h"

int islower(int ch);

The islower() function returns non-zero if its argument is a

lowercase letter. Otherwise, zero is returned.

Related topics:
 isupper

Page 86

isupper

Syntax

#include "string.h"

int isupper(int ch);

The isupper() function returns non-zero if its argument is an

uppercase letter. Otherwise, zero is returned.

Related topics:
 islower
 tolower

Page 87

strcat

Syntax

#include "string.h"

 char *strcat(char *str1, char *str2);

The strcat() function concatenates str2 onto the end of str1, and returns

str1. For example:

 printf("Enter your name: ");

 scanf("%s", name);
 title = strcat(name, " the Great");
 printf("Hello, %s\n", title);

Note that strcat() does not perform bounds checking, and thus risks

overrunning str1 or str2.

For a similar (and safer) function that includes bounds checking, see

strncat().

Related topics:
 strchr
 strcmp
 strcpy
 strncat

Page 88

strchr

Syntax

#include "string.h"

 char *strchr(char *str, int ch);

The function strchr() returns a pointer to the first occurence of ch in str,

or NULL if ch

is not found.

Related topics:
 strcat
 strcmp
 strcpy
 strlen
 strncat
 strncmp
 strncpy
 strpbrk
 strspn
 strstr

Page 89

strcmp

Syntax

#include "string.h"

 int strcmp(char *str1, char *str2);

The function strcmp() compares str1 and str2, then returns:

Return value Explanation
less than 0 ''str1'' is less than ''str2''
equal to 0 ''str1'' is equal to ''str2''
greater than 0 ''str1'' is greater than ''str2''

For example:

 printf("Enter your name: ");

 scanf("%s", name);
 if(strcmp(name, "Mary") == 0) {
 printf("Hello, Dr. Mary!\n");
 }

Note that if str1 or str2 are missing a null-termination character, then

strcmp() may not

produce valid results. For a similar (and safer) function that includes

explicit bounds

checking, see strncmp().

Related topics:
 memcmp
 strcat
 strchr

Page 90

strcpy

Syntax

#include "string.h"

 char *strcpy(char *to, char *from);

The strcpy() function copies characters in the string from to the string to,

including the

null termination. The return value is to.

Note that strcpy() does not perform bounds checking, and thus risks

overrunning from or to.

For a similar (and safer) function that includes bounds checking, see

strncpy().

Related topics:
 memcpy
 strcat
 strchr
 strcmp
 strncmp
 strncpy

Page 91

strcspn

Syntax

#include "string.h"

unsigned int strcspn(char *str1, char *str2);

The function strcspn() returns the index of the first character in str1 that

matches any of

the characters in str2.

Related topics:
 strrchr
 strstr

Page 92

strlen

Syntax

#include "string.h"

int strlen(char *str);

The strlen() function returns the length of str (determined by the number of

characters before

null termination).

Related topics:
 memcpy
 strchr
 strcmp
 strncmp

Page 93

strncat

Syntax

#include "string.h"

char *strncat(char *str1, char *str2, unsigned int count);

The function strncat() concatenates at most count characters of str2 onto

str1, adding a

null termination. The resulting string is returned.

Related topics:
 strcat
 strchr
 strncmp
 strncpy

Page 94

strncmp

Syntax

#include "string.h"

int strncmp(char *str1, char *str2, unsigned int count);

The strncmp() function compares at most count characters of

str1 and str2. The return value is as follows:

Return value Explanation
less than 0 ''str1'' is less than ''str2''
equal to 0 ''str1'' is equal to ''str2''
greater than 0 ''str1'' is greater than str2''

If there are less than count characters in either string,

then the comparison will stop after the first null termination

is encountered.

Related topics:

 strchr

 strcmp

 strcpy

 strlen

 strncat

 strncpy

Page 95

strncpy

Syntax

#include "string.h"

char *strncpy(char *to, char *from, unsigned int count);

The strncpy() function copies at most count characters of from

to the string to. If from has less than count characters, the

remainder is padded with '\0' characters. The return value is

the resulting string.

Related topics:
 memcpy
 strchr
 strcpy
 strncat
 strncmp

Page 96

strrchr

Syntax

#include "string.h"

char *strrchr(char *str, int ch);

The function strrchr() returns a pointer to the last occurrence

of ch in str, or NULL if no match is found.

Related topics:
 strcspn
 strstr

Page 97

strstr

Syntax

#include "string.h"

char *strstr(char *str1, char *str2);

The function strstr() returns a pointer to the first occurrence

of str2 in str1, or NULL if no match is found. If the length of

str2 is zero, then strstr() will simply return str1.

For example, the following code checks for the existence of one

string within another string:

 char* str1 = "this is a string of characters";

 char* str2 = "a string";
 char* result = strstr(str1, str2);
 if(result == NULL) printf("Could not find '%s' in '%s'\n", str2, str1
);

 else printf("Found a substring: '%s'\n", result);

When run, the above code displays this output:

 Found a substring: 'a string of characters'

Related topics:
 memchr
 strchr
 strcspn
 strrchr

Page 98

tolower

Syntax

#include "string.h"

int tolower(int ch);

The function tolower() returns the lowercase version of the

character ch.

Related topics:
 isupper
 toupper

Page 99

toupper

Syntax

#include "string.h"

int toupper(int ch);

The toupper() function returns the uppercase version of the

character ch.

Related topics:
 tolower

Page 100

string convert Libraries

 These libraries have been adapted from the standard set. And are included in coridium.h

String Conversion Functions
 atoh
 atoi

Page 101

http://www.coridiumcorp.com

atoh

Syntax

#include "coridium.h"

int atoh(char *str);

The atoi() function converts str into an integer, and returns that integer.

str should start with whitespace or some sort of number, and atoi() will

stop reading from str as soon as a non-numerical character has been read.

For example:

 int i;

 i = atoh("200");
 i = atoh("0x200");
 i = atoh(" 200.");
 i = atoh(" 200+22");
 i = atoh(" 200 bottles of beer on the wall");

All five of the above assignments to the variable i would result

in it being set to 512.

If the conversion cannot be performed, then atoh() will return zero:

 int i = atoh(" does not work: "); // results in i == 0

You can use sprintf() to convert a number into a string.

Related topics:
 atoh
 sprintf

Page 102

atoi

Syntax

#include "coridium.h"

int atoi(char *str);

The atoi() function converts str into an integer, and returns that integer.

str should start with whitespace or some sort of number, and atoi() will

stop reading from str as soon as a non-numerical character has been read.

For example:

 int i;

 i = atoi("512");
 i = atoi("512.035");
 i = atoi(" 512.035");
 i = atoi(" 512+34");
 i = atoi(" 512 bottles of beer on the wall");

All five of the above assignments to the variable i would result

in it being set to 512.

If the conversion cannot be performed, then atoi() will return zero:

 int i = atoi(" does not work: 512"); // results in i == 0

You can use sprintf() to convert a number into a string.

Related topics:
 atoh
 sprintf

Page 103

cor_min_io Library

 Some simple input and output routines provide communication from the ARMmite/ARMexpress back to
the PC. These routines adopted from ARMbasic are usually smaller and simpler than some similar routines
available to GCC.

 This library has been superceeded by printf and the communication library, it is been kept for backwards
compatability.

cor_min_io Library
 getCh
 getStr
 printDec
 printHex
 printStr
 str2dec

Page 104

http://www.coridiumcorp.com

getCh

Syntax

inr getCh ();

Description

getCh() will return a single character (0-255) if one is available in the input buffer.

If no character is available then -1 is returned.

This routine unlike getStr returns immediately whether a character is available or not.

Example

while (1) {
 ch = getCh();
 if (ch != -1) break;
}

See also

 getStr

Page 105

http://www.coridiumcorp.com/cHELP/scr/cgetStr.html

getStr

Syntax

void getStr(char *stringPointer, int maxLen);

Description

getStr will accept a string from the USB port on the ARMmite or SIN on the ARMexpress.

The string will be saved into the stringPointer char array. A CR (carriage return) will terminate the string
and a 0 (null) character will be added to the array and the routine will return.

maxLen will limit the number of characters copied into stringPointer. If that limit is hit, then the routine
will return.

getStr will wait for input indefinately.

Example

 while (1) {
 printStr("enter option:");
 getStr(instring, 100);
 inval = str2dec(instring);

 switch (inval) {
 case 1:

See also

 getCh
 getStr

Page 106

http://www.coridiumcorp.com/cHELP/scr/cGetCh.html
http://www.coridiumcorp.com/cHELP/scr/cgetStr.html

printDec

Syntax

printDec (expression);

Description

This sends the decimal string representation of the integer expression to the USB/serial port. The size of
the result string depends on the integer type passed, it's not fixed.

Example

printDec (255); // will display 255

See also

 printCh
 printDec
 printHex
 printStr

Page 107

printHex

Syntax

void printHex (expression);

Description

This sends the hexadecimal string representation of the integer expression to the USB/serial port.
Hexadecimal values contain 0-9, and A-F. The size of the result string depends on the integer type
passed, it's not fixed.

Example

printHex (255); // will display FF

See also

 printCh
 printDec
 printHex
 printStr

Page 108

printStr

Syntax

void printStr (char * pointer);

Description

This sends the string pointed to by pointer to the USB/serial port. The size of the result string depends
on the integer type passed, it's not fixed.

Example

printStr ("hi mom"); // will display hi mom

See also

 printCh
 printDec
 printHex
 printStr

Page 109

str2dec

Syntax

int str2dec (char * stringPointer);

Description

str2dec returns the numeric value of the string pointed to by stringPointer. The default conversion uses
decimal, but it will convert hex values preceeded by 0x

Example

 while (1) {
 printStr("enter option:");
 getStr(instring, 100);
 inval = str2dec(instring);

 switch (inval) {
 case 1:
 ...

See also

 getStr

Page 110

str2hex

Syntax

int str2hex (char * stringPointer);

Description

str2hex returns the numeric value of the string pointed to by stringPointer. The default conversion uses
hexadecimal.

Example

 while (1) {
 printStr("enter option:");
 getStr(instring, 100);
 inval = str2hex(instring);

 switch (inval) {
 case 1:
 ...

See also

 getStr

Page 111

Sample Programs

Csample.c

This sample program exercises all the cor_hwlib components.

It also includes the source for a simple break point facility, that allows the user to read and write memory
and registers. When a break is hit memory can be listed with

@hex-num // will dump memory starting at that location

@ // will continue the dump from the end of the last location.

>hex-num1 hex-num2 // write hex-num2 into location hex-num1

The source for the breakpoint is now part of Csample.c, in the hopes it may be expanded by the user
community.

Xsample.c

This is a bare bones example program that does the minimum to get a program started

Source code for cor_hwlib.c is available for purchase from Coridium.

Page 112

http://www.coridiumcorp.com
http://www.coridiumcorp.com/catalog/product_info.php?products_id=67

Hardware Library

Hardware Library
 Pin Controls
 Hardware Function List
 Time Functions
 Alphabetical Keyword List
 Hardware Specs

Page 113

Pin Controls

Pin Controls
 DIR
 HIGH
 IN
 INPUT
 LOW
 OUTPUT

Page 114

http://www.coridiumcorp.com

DIR

Syntax

int DIR (int expression) ; // defined for port 0

int DIRx(int pin); // for pin 0-31 on port 0, pin 32-63 on port 1, pin 64-95 on port 2 ...

Description

DIR (expression) can be used to read the direction of the up to 32 configurable Port 0 pins. If DIR
(expression) is 1 then the corresponding pin is an output. If the value is 0 then that pin is an input.

With the SuperPRO and PROplus, NXP has added more configurable port pins. We are adopting their
convention for control of those pins. FIO0DIR, FIO1DIR, FIO2DIR, and FIO4DIR control the input/output
status. Writing 1 to a bit will make it an output. More details in the NXP user manuals.

Example

// Set pin 4 as an input
INPUT(4);

// Check the direction of pin 4
dir4 = DIR(4);

See also

 DIR
 HIGH
 IN
 INPUT
 LOW
 OUTPUT

Page 115

HIGH

Syntax

void HIGH (int pin); // defined for port 0

void HIGHx(int pin); // for pin 0-31 on port 0, pin 32-63 on port 1, pin 64-95 on port 2 ...
Description

HIGH will set the Port 0 pin corresponding to expression to a positive value (3.3V).

HIGH does not change the direction of the port 0 pin, ie. it must be set to an OUTPUT before HIGH has
any affect.

With the SuperPRO and PROplus, NXP has added more configurable port pins. We are adopting their
convention for control of those pins. FIO0SET, FIO1SET, FIO2SET, and FIO4SETwill set an output high
when written with a 1. More details in the NXP user manuals.

Example

// set pins 0 to 7 to output and low or to 0 V
for (i=0;i<8; i++) {
 OUTPUT(i);
 LOW(i);
}

for (i=0;i<8; i++) {
 WAIT(1000);
 OUTPUT(i);
 HIGH (i); // set each pin HIGH one after the other every second
}

See also

 DIR
 HIGH
 IN
 INPUT
 LOW
 OUTPUT

Page 116

IN

Syntax

int IN (int pin); // defined for port 0

int INx(int pin); // for pin 0-31 on port 0, pin 32-63 on port 1, pin 64-95 on port 2 ...
Description

IN returns the value on the Port 0 pin corresponding to expression.

0 is returned for 0V and -1 for 2.5V or above. Why -1 and 0? NOT(~) 0 is equal to -1.

With the SuperPRO and PROplus, NXP has added more configurable port pins. We are adopting their
convention for control of those pins. FIO0DIR, FIO1DIR, FIO2DIR, and FIO4DIR control the input/output
status. Writing 1 to a bit will make it an output. More details in the>NXP user manuals.

Example

 printf("Pin 15 is ");
 INPUT(15); // make pin 15 an INPUT

 printf("%d\n",IN(15)); // now read the value on that pin

See also

 DIR
 HIGH
 IN
 INPUT
 LOW
 OUTPUT

Page 117

INPUT

Syntax

void INPUT (int pin); // defined for port 0

void INPUTx(int pin); // for pin 0-31 on port 0, pin 32-63 on port 1, pin 64-95 on port 2 ...
Description

INPUT will set the Port 0 pin corresponding to expression to an input.

With the SuperPRO and PROplus, NXP has added more configurable port pins. We are adopting their
convention for control of those pins. FIO0DIR, FIO1DIR, FIO2DIR, and FIO4DIR control the input/output
status. Writing 1 to a bit will make it an output. More details in the NXP user manuals.

Example

 printf("Pin 15 is ");
 INPUT(15); // make pin 15 an INPUT

 printf("%d\n",IN(15)); // now read the value on that pin

See also

 DIR
 HIGH
 IN
 INPUT
 LOW
 OUTPUT

Page 118

LOW

Syntax

void LOW (int pin); // defined for port 0

void LOWx(int pin); // for pin 0-31 on port 0, pin 32-63 on port 1, pin 64-95 on port 2 ...
Description

LOW will set the Port 0 pin corresponding to expression to a negative value (0V) and then set it to an
output.

With the SuperPRO and PROplus, NXP has added more configurable port pins. We are adopting their
convention for control of those pins. FIO0CLR, FIO1CLR, FIO2CLR, and FIO4CLR will set an output low
when written with a 1. More details in the NXP user manuals.

Example

// set pins 0 to 7 to output and low or to 0 V
for (i=0;i<8; i++) {
 OUTPUT(i);
 LOW(i);
}

for (i=0;i<8; i++) {
 WAIT(1000);
 OUTPUT(i);
 HIGH (i); // set each pin HIGH one after the other every second
}

See also

 DIR
 HIGH
 IN
 INPUT
 LOW
 OUTPUT

Page 119

OUTPUT

Syntax

void OUTPUT (int pin); // defined for port 0

void OUTPUTx(int pin); // for pin 0-31 on port 0, pin 32-63 on port 1, pin 64-95 on port 2 ...
Description

OUTPUT will set the Port 0 pin corresponding to expression to an output.

With the SuperPRO and PROplus, NXP has added more configurable port pins. We are adopting their
convention for control of those pins. FIO0DIR, FIO1DIR, FIO2DIR, and FIO4DIR control the input/output
status. Writing 1 to a bit will make it an output. More details in the NXP user manuals.

Example

 printf("LED on\n");
 OUTPUT(15);
 LOW(15);

See also

 DIR
 HIGH
 IN
 INPUT
 LOW
 OUTPUT

Page 120

Hardware Function List

A

 AD

B

 BAUD

C

 configAD

 COUNT

D

 DIGITAL

F

 FREQOUT

H

 HWPWM

I

 I2CIN

 I2COUT

 I2CSPEED

O

 OWIN

 OWOUT

P

 PULSIN

 PULSOUT

 PWM

R

 RCTIME

 RXD

S

 SERIN

 SERINtimeout

 SEROUT

 SHIFTIN

 SHIFTOUT

 SPIIN

 SPIMODE

 SPIOUT

T

 TIMER

 TXD

Page 121

AD

Syntax

extern int AD(int channel);
Description

ARMmite, ARMexpress LITE and ARMweb

AD will return 0..65472 that corresponds to the voltage on the pin corresponding to expression . The value
returned will have the top 10 bits being significant. (bits 5..0 will be 0). 0 would be read for 0V and 65472
for 3.3V.

An analog conversion on pin expression is performed. This process takes less than 6 usec.

Dual Use AD pins

ARMmite version

On reset or power up the AD pins are configured as AD inputs. To change those to digital IOs, the user
must individually specify a switch to digital using DIGITAL(IOpin) which is a #define for IOpins 16-23.

ARMexpress LITE version

The ARMexpress LITE supports up to 6 channels of AD converters.

On the ARMexpress LITE and ARMweb these pins are configured as digital IOs at reset, but must be
switched to AD using configAD(channel) which is a #define for channels 0-7.

 AD(0) IO(7)
 AD(1) IO(10)
 AD(2) IO(8)
 AD(3) not available
 AD(4) not available
 AD(5) IO(9)
 AD(6) IO(11)

 AD(7) IO(12)

Example

 temperature = AD(0) >> 6; // read a raw temperature voltage

See also

 TXD
 RXD

Page 122

configAD

Syntax

#define configAD(int channel);
Description

Dual Use AD pins

ARMexpress LITE version

The ARMexpress LITE supports up to 6 channels of AD converters.

On the ARMexpress LITE and ARMweb these pins are configured as digital IOs at reset, but must be
switched to AD using configAD(channel) which is a #define for channels 0-7.

 AD(0) IO(7)
 AD(1) IO(10)
 AD(2) IO(8)
 AD(3) not available
 AD(4) not available
 AD(5) IO(9)
 AD(6) IO(11)

 AD(7) IO(12)

Example

 configAD(1); // switch IO(10) to AD(1)

See also

 TXD
 RXD

Page 123

COUNT

Syntax

int COUNT(int pin, int duration);

Description

Count the number of pulses low-high-low or high-low-high on pin over a duration of milliseconds, returning
the value to variable.

Example

 printf("\n count pulses on pin 0 for 5 seconds\n");

 printf("%d pulses happened\n",COUNT(0, 5000));

See also

 RCTIME

Page 124

DIGITAL

Syntax

#define DIGITAL(int IOpin)
Description

Dual Use AD pins

ARMmite version

On reset or power up the AD pins are configured as AD inputs. To change those to digital IOs, the user
must individually specify a switch to digital using DIGITAL(IOpin) which is a #define for IOpins 16-23.

Example

 DIGITAL(4); // switch AD(4) to a digital pin accessed at IO(20)

See also

 TXD
 RXD

Page 125

HWPWM

Syntax

void HWPWM (int cycletime,int itemCnt, int *hightimeList);

Description
ARMmite and Wireless ARMmite version

The ARMmite supports up to 8 channels of hardware driven PWM. The IO direction of the pin will be set
to output. Once programmed these will continue to generate the specified PWM until re-programmed or
reset.

Cycletime is in microseconds, is the time for a single PWM cycle. Hightimes are also in microseconds
and represent the amount of time during the cycle that the corresponding outputs are high. It is assumed,
but not enforced that cycletimes for all channels will be the same.

 channel1 IO(0)
 channel2 IO(1)
 channel3 IO(2)
 channel4 IO(3)
 channel5 IO(4)
 channel6 IO(9)
 channel7 IO(10)

 channel8 IO(11)

ARMmite PRO version

The ARMmite PRO also supports up to 8 channels of hardware driven PWM. The IO direction of the pin
will be set to output. Once programmed these will continue to generate the specified PWM until
re-programmed or reset.

Cycletime is in microseconds, is the time for a single PWM cycle. Hightimes are also in microseconds
and represent the amount of time during the cycle that the corresponding outputs are high. It is assumed,
but not enforced that cycletimes for all channels will be the same.

 channel1 IO(0)
 channel2 IO(1)
 channel3 IO(8)
 channel4 IO(5)
 channel5 IO(14)
 channel6 IO(10)
 channel7 IO(11)

 channel8 IO(3)

ARMexpress LITE version

The ARMexpress LITE supports up to 6 channels of hardware driven PWM. The IO direction of the pin will
be set to output. Once programmed these will continue to generate the specified PWM until
re-programmed or reset. 2 of the channels are not available on the pins.

Page 126

Cycletime is in microseconds, is the time for a single PWM cycle. Hightimes are also in microseconds
and represent the amount of time during the cycle that the corresponding outputs are high. It is
assumed, but not enforced that cycletimes for all channels will be the same.

 channel1 IO(5)
 channel2 IO(6)
 channel3 IO(3)
 channel4 not available
 channel5 IO(14)
 channel6 not available
 channel7 IO(13)

 channel8 IO(15)

SuperPRO version

The PROplus and SuperPRO support up to 6 channels of hardware driven PWM. The IO direction of the
pin will be set to output. Once programmed these will continue to generate the specified PWM until
re-programmed or reset.

Cycletime is in microseconds, is the time for a single PWM cycle. Hightimes are also in microseconds
and represent the amount of time during the cycle that the corresponding outputs are high. It is assumed,
but not enforced that cycletimes for all channels will be the same.

channel1 P2.0
channel2 P2.1
channel3 P2.2
channel4 P2.3
channel5 P2.4
channel6 P2.5

The LPC17xx series processors also have an additional 6 channels designed to drive motors. See details
in the Motor PWM Control chapter of the NXP LPC17xx User Manual. Also these pins can be re-assigned
as selected by the PINSEL registers.

Example

times[0] = -1
times[1] = 750
times[2] = 100
HWPWM (1000, 3, times) 'generate 1KHz 75% and 10% signals on pins 1,2

times[0] = 2000
times[1] = 1000
times[2] = 500
HWPWM (4000, 3, times) 'gen 250 Hz 50%, 25% and 12.5% signals on pins 0,1,2

See also

 FREQOUT
 PWM

Page 127

I2CIN

Syntax

void I2CIN (int sda_pin, int scl_pin, int slaveADDR, int opt1, int opt2, int opt3, int opt4, int opt5, int cnt ,
char *inList);

Description

I2CIN will read a series of bytes from an I2C slave device. sda_pin is any expression defining the SDA pin
to use. scl_pin will be designated the SCL pin. slaveADDR will select a device on the I2C bus.

Up to 5 optional byte values may be writen out prior to reading the inList . If the optX value is -1 then it will
not be sent out. Most i2c devices have a sub-address field that is written immediately before reading.
This field would be held in opt1. For devices that do not have a sub-address, opt1 can be set to -1. In
this case, no I2C write is performed before the I2CIN. For some slow i2c devices, they can not respond to
a write of sub-address, immediately followed by a read of the device. For these slow devices (often
implemented with a slower micro-processor), it is necessary to do seperate I2COUT and I2CIN with a
delay in between.

After any write of the optX ,a series of cnt bytes will be read from the slave to fill the character array inList
.

I2C is a byte oriented bus, so each transaction will either send a byte value (0 to 255) or receive a byte for
each element of the inList .

Data is shifted in at 350 Kbits/sec.

Example

 case 41: // test EEPROM 24LC02 on pins 0 == SDA and 1 == SCL
 shortMessage[0] = 0; // address into EEPROM
 for (i=1; i<8; i++) shortMessage[i] = 0x30+i; // set shortMessage to "1234567"
 present = I2COUT (0, 1, 0xA0,8, shortMessage);

 if (present == 0) printf("NO i2c device ***\n"); else printf("i2c device found\n");
 I2CIN(0, 1, 0xA0, 0, -1, -1, -1, -1, 7, shortResponse);

See also

 I2COUT

Page 128

I2COUT

Syntax

int I2COUT (int sda_pin, int scl_pin, int slaveADDR , int cnt, char *outList);

// I2COUT returns TRUE if the device was present and responding

Description

I2COUT will send a series of bytes from an I2C slave device. sda_pin is any expression defining the SDA
pin to use. scl_pin will be designated the SCL pin. slaveADDR will select a device on the I2C bus.

After that cnt bytes will be written to the slave from the character array outList.

I2C is a byte oriented bus, so each transaction will send a byte values (0 to 255) to an I2C slave. If the
value from an expr ession in the OutputList is larger than 8 bits, the MSBs will be truncated.

If a I2C device responds the function returns 1, else 0.

Data is shifted out at 350 Kbits/sec.

Example

 case 41: // test EEPROM 24LC02 on pins 0 == SDA and 1 == SCL
 shortMessage[0] = 0;
 for (i=1; i<8; i++) shortMessage[i] = 0x30+i; // set shortMessage to "1234567"
 present = I2COUT (0, 1, 0xA0, 8, shortMessage);

See also

 I2CIN

Page 129

I2CSPEED

Syntax

void I2CSPEED (int Kbits);

Kbits= 400 | 100 | 50
Description

The default speed for I2C operations is approx 350 Kbits, which is acceptable to most modern I2C chips.

In order to support older chips or longer cable runs, the I2C operations can be slowed down to 100 Kbits.

A very slow 50 Kb rate is also supported.

Example

I2CSPEED (100); // slow down the operation

See also

 I2CIN
 I2COUT

Page 130

OWIN

Syntax

void OWIN (int pin, int out1,int out2,int out3,int out4,int out5, int out6, int cnt, char *inList) ;

Description

OWIN begins with a RESET/Presence sequence on the designated Pin.

Then upto 6 Output bytes will be transfered to the device to select the command. Byte values are sent
out, if the value is -1, then that byte is not sent.

Following that cnt bytes will be read into the character array inList .

The bit order for the 1-Wire device is assumed to be LSB (bit 0) first.

Example

 present = OWOUT(7, 7, shortMessage);
 if (present) printf("one wire device found\n");
 else {printf("*** NO one wire device ***\n"); break;}

 OWIN(7, 0xCC, 0xAA, 0, -1, -1, -1, 4, shortResponse);

 for (i=0; i<4; i++) if (shortMessage[i+3] != shortResponse[i]) break;

See also

 OWOUT

Page 131

OWOUT

Syntax

int OWOUT (int pin, int cnt, char *outList) ;

// OWOUT returns TRUE if the device was present and responding

Description

OWOUT begins with a RESET/Presence sequence on the designated Pin.

Following that cntbytes of the character array outListwill be sent to the device.

The bit order for the 1-Wire device is assumed to be LSB (bit 0) first.

If a one-wire device responds the function returns 1, else 0.

Example

 case 40: // test the EEPROM of a DS2430 on pin 7
 shortMessage[0] = 0xCC;
 shortMessage[1] = 0x0F;
 shortMessage[2] = 0x00;
 shortMessage[3] = 0x44;
 shortMessage[4] = 0x11;
 shortMessage[5] = 0x22;
 shortMessage[6] = 0xBE;

 present = OWOUT(7, 7, shortMessage);
 OWIN(7, 0xCC, 0xAA, 0, -1, -1, -1, 4, shortResponse);

See also

 OWIN

Page 132

PULSIN

Syntax

int PULSIN (int pin, int state);

Description

Measure an input pulse on pin at level, returning the value.

The IO direction of pin will be set to input.

If pin is already at level when the function is called it will wait to a transition to the opposite level.

The function will wait 1 second for pin to go to level. The length of time is measured in microseconds(us).
The minimum pulse that can be measured is 1 microseconds. If pin does not go to level or remains at
level longer than 1 second 0 is returned.

Example

 case 32:
 prinf("\n Measure PULSIN on pin 0, four times as low pulse then high pulse\n");
 for (i=0; i<4; i++) {
 printf ("%d\n", PULSIN (0, 0));
 }
 for (i=0; i<4; i++) {
 printf ("%d\n", PULSIN (0, 1));
 }

See also

 RCTIME
 COUNT

Page 133

PULSOUT

Syntax

void PULSOUT (int pin, int duration);

Description

Generate an output pulse on pin for microseconds.

The IO direction of pin will be set to output. The level of the output will be switched, driven for
microseconds, then switched back to its initial level. The minimum pulse period is 1 microseconds.

Example

 printf("Flash LED for 250ms off for 500ms\n");
 OUTPUT(15);
 HIGH(15);
 for (i=0; i<20; i++) { PULSOUT (15,250000); WAIT (500);}

See also

 PULSIN

Page 134

PWM

Syntax

void PWM(int pin, int duty, int duration);

Description

Generate an analog signal on pin for milliseconds with a duty cycle of 0 to 255.
A duty cycle of 255 corresponds to an output value of 100%.

The IO direction of the pin will be set to output, the PWM pulse train is output, and then the pin is set to
tristate (input). If the pin is connected to an RC filter, then the voltage will stay on the capacitor for a
period of time determined by the load.

Example

 printf("Ramp thru PWM on LED\n");
 for (i=0; i<256; i++) PWM (15,255-i,20);

See also

 FREQOUT
 PULSOUT

Page 135

RCTIME

Syntax

int RCTIME(int pin, int state) ;

Description

Measure the time which pin remains at state, returning the value to variable.
The length of time is measured in microseconds(us). The minimum time measured is 1 microseconds.
If pin is not at level when the function is called variable is set to 1.
If pin remains at level longer than 1 second variable is set to 0.

Example

 printf("\n check RCTIME into a 700ohm 0.1uF drive on 14, sense on 13\n");
 OUTPUT (14);
// while(1) {HIGH(14);WAIT(1);LOW(14);WAIT(1);} // scope loop

 HIGH (14);
 printf("high to low ");
 WAIT(10); // make sure line is high
 LOW(14);
 printf("%d microseconds, high to low ",RCTIME (13, 1));
 WAIT(10); // make sure line is low
 HIGH (14);
 printf("%d microseconds, low to high\n", (RCTIME (13, 0));

 check RCTIME into a 700ohm 0.1uF drive on 14, sense on 13
high to low 89 microseconds, high to low 56 microseconds, low to high

See also

 PULSIN

Page 136

RXD

Syntax

int RXD (int pin);

int RXD0(); // for UART0 access

int RXD1(); // for UART1 access

Description

RXD (pin) will receive a single byte of data that is shifted as an asynchronous serial stream. This function
is similar to SERIN, but is a more efficient implementation. The baudrate for the pin should be set before
using RXD, that is done by setting the SERbauds[] array.

RXD will timeout after 0.5 seconds and return -1. These routines are "bit-banged" by the processor, so the
processor is consumed during these operations. Interupts are also disabled during each byte for these
operations.

The 0.5 second timeout can be changed by SERINtimeout.

Baudrate can be upto 115.2Kb.

UART0 UART1 support-

For RXD0 data is received on the SIN pin. SIN and SOUT are always negative true. UART0 of the
LPC21xx, RXD1 for UART1.

For ARMexpress modules baudrates for RXD0 can be upto 19.2 Kbaud as it is limited by the level
translators. No limit for ARMmite/ARMweb Use setbaud() routine to set this baud.

Example

 while (1) {
 ch = RXD(4);
 if (ch != -1) printf("%c", ch);
 if (ch == 'Q') break;
 } // receive and echo characters from testjig

See also

 setbaud
 TXD
 SERIN

Page 137

SERbauds, setbaud

Syntax

extern int SERbauds[];

void setbaud (int channel, int baudDiv); // for UART0 and UART1

Description

This array contains the baud rates for up to 32 IOs. It is used when RXD or TXD routines are called.

Baudrates can be upto 115.2 Kbaud.

The UART0, UART1 hardware channel baudrate can be set by calling-

void setbaud(0, baudDiv); // baudDiv = 15000000 / baudrate / 16 -- for example 19.2Kb is 49 for
ARMmite, ARMexpress, and ARMweb

void setbaud(1, baudDiv); // baudDiv = 25000000 / baudrate / 16 -- for example 19.2Kb is 81
forSuperPRO and PROplus

For the ARMexpress SIN and SOUT are limited by the level translators to 19.2Kbaud. This last limit does
not apply to the SuperPRO, PROplus, ARMmite or ARMweb.

Example

 SERbauds[4] = 19200;
 SERbauds[3] = SERbauds[4];

 setbaud (1, 17); // set UART1 baudrate to 56Kb

See also

 TXD
 RXD

Page 138

SERIN

Syntax

void SERIN (int pin, int baudrate, int posTrue, char cnt, char *inList);

Description

SERIN receives cnt bytes as asynchronous serial data on pin at a baudrate and saves the data into inList
 .

PosTrue if set to 0 then the data is inverted.

inList is a pointer to a character array.

SERIN will timeout after 0.5 seconds and return -1 and 255 in the next item in the inList before the
timeout. These routines are "bit-banged" by the processor, so the processor is consumed during these
operations. Interupts are also disabled during each byte for these operations.

The 0.5 second timeout can be changed by SERINtimeout.

Baudrates can be upto 115.2 Kbaud for all pins.

For UART0 support use-

int getline(char *line, int max_len) ;

For ARMexpress modules baudrates for RXD0 can be upto 19.2 Kbaud as it is limited by the level
translators. No limit for ARMmite/ARMweb Use setUART0baud() routine to set this baud.

Example

 while (1) {
 SERIN (4,19200,1, 1, shortMessage);
 if (shortMessage[0] != 255) printCh(shortMessage[0]);
 if (shortMessage[0] == 'Q') break;
 } // receive and echo characters from testjig

See also

 SEROUT
 SERINtimeout

Page 139

SERINtimeout

Syntax

extern int SERINtimeout;

Description

The default time that SERIN waits for input on pins 0-31 is 0.5 seconds.

This may be changed using this statement. The timeout will be set in micro-seconds.

Example

// set the timeout shorter on for polling an LCD/keypad combination to 100 ms
SERINtimeout = 100000;
 ...

proc GetKey() {
 LCDcmd[0] = 24;
 LCDlen = 0;
 GenCRC();
 SEROUT (1,LCDbaud,1,LCDlen+3,LCDcmd);
 SERIN (1,LCDbaud,1,3,LCDcmd);
}

See also

 SERIN
 SEROUT

Page 140

SEROUT

Syntax

void SEROUT (int pin,int baudrate, int posTrue,int cnt, char *outList);

Description

SEROUT sends cnt bytes pointed to by outList out as asynchronous serial data on pin at a baudrate.
PosTrue if set to 0 then the data is inverted.

outListis a character array.

These routines are "bit-banged" by the processor, so the processor is consumed during these
operations. Interupts are also disabled during each byte for these operations.

Baudrates can be upto 115.2 Kbaud for all pins

UART0 support-

Use printf or TXD0. The hardware serial port routines are used, so the CPU is not tied up. So when a byte
is sent it is placed into the UART FIFO, but if the 16 byte FIFO is full then the CPU will wait until space is
available.

For ARMexpress modules baudrates for RXD0 can be upto 19.2 Kbaud as it is limited by the level
translators. No limit for ARMmite/ARMweb Use setUART0baud() routine to set this baud.

Example

 shortMessage[0] = 0x33;
 shortMessage[1] = 0x34;
 shortMessage[2] = 0x35;

 SEROUT(3,19200, 1, 3, shortMessage); // send 123 to the testjig serial connection

See also

 SERIN

Page 141

SERbauds, setbaud

Syntax

extern int SERbauds[];

void setbaud (int channel, int baudDiv); // for UART0 and UART1

Description

This array contains the baud rates for up to 32 IOs. It is used when RXD or TXD routines are called.

Baudrates can be upto 115.2 Kbaud.

The UART0, UART1 hardware channel baudrate can be set by calling-

void setbaud(0, baudDiv); // baudDiv = 15000000 / baudrate / 16 -- for example 19.2Kb is 49 for
ARMmite, ARMexpress, and ARMweb

void setbaud(1, baudDiv); // baudDiv = 25000000 / baudrate / 16 -- for example 19.2Kb is 81
forSuperPRO and PROplus

For the ARMexpress SIN and SOUT are limited by the level translators to 19.2Kbaud. This last limit does
not apply to the SuperPRO, PROplus, ARMmite or ARMweb.

Example

 SERbauds[4] = 19200;
 SERbauds[3] = SERbauds[4];

 setbaud (1, 17); // set UART1 baudrate to 56Kb

See also

 TXD
 RXD

Page 142

SHIFTIN

Syntax

void SHIFTIN (int in_pin, int clk_pin, int mode, int cnt, int *wordList , int bitLengths) ;
Description

SHIFTIN has been kept as a compatable function with PBASIC. It can be used for devices that are not
covered by SPI, I2C or 1-Wire. Data is shifted in on in_pin, and a positive clock is sent on clk_pin for
each bit.

While most other hardware functions use bytes, SHIFTIN is oriented for bit control. The length of each
variable defines the number of bits that will be shifted out (2 - 32). For each word bitLengths bits will be
shifted in.

 Mode = 0 data is shifted in MSB first, and sampling starts before the first clock pulse
 Mode = 1 data is shifted in LSB first, and sampling starts before the first clock pulse
 Mode = 2 data is shifted in MSB first, and sampling starts before the second clock pulse
 Mode = 3 data is shifted in LSB first, and sampling starts before the second clock pulse

SHIFTIN fills the integer array wordList . cnt integers will be shifted in.

Data is shifted in at 600 Kbits/sec.

Example

 printf("FPU SHIFT test\n"); for (i= 0; i<10; i++) wordMessage[i]= 0xFF;
 wordMessage [i] = 0;
 SHIFTOUT (14,15,MSBFIRST,11,wordMessage, 8); // reset FPU
 WAIT (10); wordMessage [0] = 0xF0; // sync character
 SHIFTOUT (14,15,MSBFIRST,1,wordMessage, 8); // sync FPU
 save_time = TIMER;
 while ((TIMER - save_time) < 15) ; // wait 15 uSec

 SHIFTIN (14,15, MSBPRE, 1,wordMessage, 8); // get 1 byte status back
 if (wordMessage[0] != 0x5C) {
 printf(%x "FPU found\nwordMessage[0]);
 break;
 }

See also

 SHIFTOUT
 SPIIN

Page 143

SHIFTOUT

Syntax

void SHIFTOUT (int out_pin, int clk_pin, int mode, int cnt , int *wordList, int bitLengths) ;
Description

SHIFTOUT has been kept as a compatable function with PBASIC. It can be used for devices that are not
covered by SPI, I2C or 1-Wire. Data is placed on out_pin and the clk_pin is pulsed each bit.

While most other hardware functions use bytes, SHIFTOUT is oriented for bit control. The length of each
variable defines the number of bits that will be shifted out (2 - 32). For each element bitLengths bits are
shifted out.

 Mode = 0 data is shifted out LSB first
 Mode = 1 data is shifted out MSB first

SHIFTOUT uses values from the interger array wordList. cnt integers will be shifted out.

Data is shifted out of the device at 800 Kbits/sec.

Example

 printf("FPU SHIFT test\n"); for (i= 0; i<10; i++) wordMessage[i]= 0xFF;
 wordMessage [i] = 0;
 SHIFTOUT (14,15,MSBFIRST,11,wordMessage, 8); // reset FPU
 WAIT (10); wordMessage [0] = 0xF0; // sync character
 SHIFTOUT (14,15,MSBFIRST,1,wordMessage, 8); // sync FPU
 save_time = TIMER;
 while ((TIMER - save_time) < 15) ; // wait 15 uSec

 SHIFTIN (14,15, MSBPRE, 1,wordMessage, 8); // get 1 byte status back
 if (wordMessage[0] != 0x5C) {
 printf("%x No FPU found\n",shortResponse[0]); break;
 }
 printf("FPU found\n");

See also

 SHIFTIN
 SPIIN

Page 144

SPIIN

Syntax

void SPIIN (int CS_pin,int in_pin,int clk_pin,int out_pin, int out1, int out2, int out3, int cnt, char *InputList);

Description

SPIIN supports the loosely defined serial protocol used by a variety of manufacturers. The desired device
is selected by asserting CS_pin LOW. If there is no CS_pin , the value should be set to -1.

In the simplest case, in_pin is used to input data clocked by clk_pin, to fill the character array InputList
with cnt bytes.

In bi-directional cases, out1..out3 byte values will be output on out_pin before reading the InputList . If not
used, those should be set to -1. It is also allowable to have in_pin equal to out_pin , in which case that
pin will be driven for the out1..out3 and then converted to an input for in_pin .

Data is shifted in LSB first and each element of the InputList is filled with a byte of data. To use negative
edge clocks or MSB first, the default SPImode may be changed.

Data is shifted in at 600 Kbits/sec.

Example

 case 42: // check MicroMega FPU status
 // clock on pin 15 and bi-directional data on 14, no CS used
 SPImode = 0; // FPU uses MSB first -- positive clock
 for (i=0; i<10; i++) shortMessage[i]= 0xFF;
 shortMessage [i] = 0;
 SPIOUT (-1,14,15,11,shortMessage); // reset FPU
 WAIT (10);

 shortMessage [0] = 0xF0; // sync character
 SPIOUT (-1,14,15,1,shortMessage); // sync FPU
 save_time = TIMER;
 while ((TIMER - save_time) < 15) ; // wait 15 uSec
 SPIIN (-1,14,15, -1,-1,-1,-1, 1,shortResponse); // get 1 byte status back

 if (shortResponse[0] != 0x5C) {
 printf("%x No FPU found\n",shortResponse[0]);
 break;
 }
 printf("FPU found\n");

See also

 SPIOUT
 SPImode

Page 145

SPImode

Syntax

extern char SPImode;

Description

SPImode will change the bit order and clock sense for all suceeding SPI commands or until SPImode is
changed again.

 SPImode= 0 data is shifted in MSB first, and sampling starts before the first rising clock edge
(positive true clock)

 SPImode= 1 data is shifted in LSB first, and sampling starts before the first rising clock edge.
(positive true clock) (default value)

 SPImode= 2 data is shifted in MSB first, and sampling starts before the second clock pulse
 SPImode= 3 data is shifted in LSB first, and sampling starts before the second clock pulse

Example

 case 42: // check MicroMega FPU status
 // clock on pin 15 and bi-directional data on 14, no CS used
 SPImode = 0; // FPU uses MSB first -- positive clock
 for (i=0; i<10; i++) shortMessage[i]= 0xFF;
 shortMessage [i] = 0;
 SPIOUT (-1,14,15,11,shortMessage); // reset FPU
 WAIT (10);

 shortMessage [0] = 0xF0; // sync character
 SPIOUT (-1,14,15,1,shortMessage); // sync FPU
 save_time = TIMER;
 while ((TIMER - save_time) < 15) ; // wait 15 uSec
 SPIIN (-1,14,15, -1,-1,-1,-1, 1,shortResponse); // get 1 byte status back

 if (shortResponse[0] != 0x5C) {
 printf("%x No FPU found\n",shortResponse[0]); break;
 }
 printf("FPU found\n");

See also

 SPIOUT
 SPImode

Page 146

SPIOUT

Syntax

void SPIOUT (int CSpin, int out_pin, int clk_pin, int cnt, char *OutputList);
Description

SPIOUT supports the loosely defined serial protocol used by a variety of manufacturers. The desired
device is selected by asserting CSpin LOW. If there is no cspin, the value should be set to -1.

In the simplest case, out_pin is used to output data clocked by clk_pin, from the OutputList. CSpin,
out_pin and clk_pin are left as and outputs.

Data is shifted out LSB first and each element of the OutputList is treated as a byte. This order can be
changed with SPImode.

Data is shifted out at 800 Kbits/sec
Example

 shortMessage [0] = 0xF3; // get version
 SPIOUT (-1,14,15,1,shortMessage); // sync FPU
 INPUT (14); // allow FPU to drive this bidirectional line
 while (IN(14)); // wait for FPU to drive that line low
 shortMessage [0] = 0xF2; // get string back
 SPIOUT (-1,14,15,1,shortMessage); // sync FPU
 save_time = TIMER;
 while ((TIMER - save_time) < 15) ; // wait 15 uSec
 while (1) {
 SPIIN (-1,14,15, -1,-1,-1,-1, 1,shortResponse); // get 1 byte at a time back and print it
 if (shortResponse[0] == 0) break;
 printf("%x\n",shortResponse[0]);
 }

See also

 SPIIN

Page 147

TIMER

Syntax

TIMER
Description

TIMER is a free running timer that increments every microsecond. It is readable using this keyword.
You can also write to the TIMER register.

Operations that require more precise timing should use the dedicated hardware routines, as interupts that
are occuring for other time functions and serial input may make times using TIMER look longer than
actual.

Example

 int save_time; // must be signed to handle roll-over

 save_time = TIMER;
 while ((TIMER - save_time) < 15) ; // wait 15 uSec

 TIMER = 0; // reset the free running timer

See also

 DAY
 HOUR
 MINUTE
 MONTH
 SECOND
 TIMER
 WEEKDAY
 YEAR

Page 148

TXD

Syntax

void TXD (int pin, int byte); // for bit-banged version on any pin

void TXD0(int byte); // for hardware support

void TXD1(int byte); // for UART1

Description

TXD (pin, byte) will send a single byte of data that is shifted out as an asynchronous serial stream on pin
. This function is similar to SEROUT, but is a more efficient implementation. The baudrate for the pin
should be set before using TXD, that is done setting the SERbauds[] array.

These routines are "bit-banged" by the processor, so the processor is consumed during these
operations. Interupts are also disabled during each byte for these operations.

UART0 UART1 support-

The hardware serial port routines are used, so the CPU is not tied up. So when a byte is sent it is placed
into the UART FIFO, but if the 16 byte FIFO is full then the CPU will wait until space is available.

For ARMexpress modules baudrates for RXD0 can be upto 19.2 Kbaud as it is limited by the level
translators. No limit for ARMmite/ARMweb Use setUART0baud() routine to set this baud.

Example

 TXD(3,'a'); TXD(3,'b'); TXD(3,'c'); // send out abc

See also

 setbaud
 RXD
 SEROUT

Page 149

Pin Controls

Time Function Library
 DAY
 HOUR
 MINUTE
 MONTH
 SECOND
 TIMER
 WEEKDAY
 YEAR

Page 150

http://www.coridiumcorp.com

DAY

Syntax

RTC_DAY
void setDAY (x);

Description

Function setting or returning the day of the month.
Range 1 to 28, 29, 30, or 31
(depending on the month and whether it is a leap year).

Example

 printf("This is: ");
 switch (RTC_DOW) {
 case 0: printf("Sunday "); break;
 case 1: printf("Monday "); break;
 case 2: printf("Tuesday "); break;
 case 3: printf("Wednesday "); break;
 case 4: printf("Thursday "); break;
 case 5: printf("Friday "); break;
 case 6: printf("Saturday "); break;
 }
 printf(" %d/%d/%d \n",RTC_MONTH,RTC_DAY,RTC_YEAR);

The output would look like:

This is Friday 4/14/2006

See also

 DAY
 HOUR
 MINUTE
 MONTH
 SECOND
 TIMER
 WEEKDAY
 YEAR

Page 151

HOUR

Syntax

RTC_HOUR

void setHOUR(int value);
Description

RTC_HOUR returns the hour of the real time clock.
Range 0 to 23.

setHOUR(x) will change the gour of the real time clock.
Example

 printf("%d:%02d:%02d",RTC_HOUR,RTC_MIN,RTC_SEC);

The output would look like:

13:15:30

See also

 DAY
 HOUR
 MINUTE
 MONTH
 SECOND
 TIMER
 WEEKDAY
 YEAR

Page 152

MINUTE

Syntax

RTC_MIN

void setMIN(int value);
Description

RTC_MIN returns the minute of the real time clock.
Range 0 to 59.

setMIN(x) will change the minute value of the real time clock.
Example

 printf("%d:%02d:%02d",RTC_HOUR,RTC_MIN,RTC_SEC);

The output would look like:

13:15:30

See also

 DAY
 HOUR
 MINUTE
 MONTH
 SECOND
 TIMER
 WEEKDAY
 YEAR

Page 153

MONTH

Syntax

RTC_MON
void setMON(x);

Description

Function setting or returning the month.
Range 1 to 12.

Example

 printf("This is: ");
 switch (RTC_DOW) {
 case 0: printf("Sunday "); break;
 case 1: printf("Monday "); break;
 case 2: printf("Tuesday "); break;
 case 3: printf("Wednesday "); break;
 case 4: printf("Thursday "); break;
 case 5: printf("Friday "); break;
 case 6: printf("Saturday "); break;
 }
 printf(" %d/%d/%d \n",RTC_MONTH,RTC_DAY,RTC_YEAR);

The output would look like:

This is Friday 4/14/2006

See also

 DAY
 HOUR
 MINUTE
 MONTH
 SECOND
 TIMER
 WEEKDAY
 YEAR

Page 154

SECOND

Syntax

RTC_SEC

void setSEC(int value);
Description

RTC_SEC returns the second value of the real time clock.
Range 0 to 59.

setSEC(x) will set the SECOND value of the real time clock
Example

 printf("%d:%02d:%02d",RTC_HOUR,RTC_MIN,RTC_SEC);

The output would look like:

 13:15:30

See also

 DAY
 HOUR
 MINUTE
 MONTH
 TIMER
 WEEKDAY
 YEAR

Page 155

TIMER

Syntax

TIMER
Description

TIMER is a free running timer that increments every microsecond. It is readable using this keyword.
You can also write to the TIMER register.

Operations that require more precise timing should use the dedicated hardware routines, as interupts that
are occuring for other time functions and serial input may make times using TIMER look longer than
actual.

Example

 int save_time; // must be signed to handle roll-over

 save_time = TIMER;
 while ((TIMER - save_time) < 15) ; // wait 15 uSec

 TIMER = 0; // reset the free running timer

See also

 DAY
 HOUR
 MINUTE
 MONTH
 SECOND
 TIMER
 WEEKDAY
 YEAR

Page 156

WAIT

Syntax

WAIT(milliseconds) ;

Description

Delay program execution a number of milliseconds.
1000 milliseconds is one second

Example

 case 42: // check MicroMega FPU status -- clock pin 15 and data on 14, no CS used
 printf("FPU SPI test\n");

 SPImode = 0; // FPU uses MSB first -- positive clock
 for (i=0; i<10; i++) shortMessage[i]= 0xFF;
 shortMessage [i] = 0;
 SPIOUT (-1,14,15,11,shortMessage); // reset FPU
 WAIT (10); // allow recovery time - 10 milliseconds

See also

 TIMER
 SLEEP

Page 157

WEEKDAY

Syntax

RTC_DOW
Description

This hardware register maintains the day of the week. 0 corresponding to Sunday through 6 corresponding
to Saturday

This value will be set when the setYEAR routine is called, it is counted from a known date.

Example

 printf("This is: ");
 switch (RTC_DOW) {
 case 0: printf("Sunday "); break;
 case 1: printf("Monday "); break;
 case 2: printf("Tuesday "); break;
 case 3: printf("Wednesday "); break;
 case 4: printf("Thursday "); break;
 case 5: printf("Friday "); break;
 case 6: printf("Saturday "); break;
 }

The output would look like:

This is Friday

See also

 DAY
 HOUR
 MINUTE
 MONTH
 SECOND
 TIMER
 WEEKDAY
 YEAR

Page 158

YEAR

Syntax

RTC_YEAR

void setYEAR (x};

Description

Function setting or returning the year.

When setting the date, the year should be set last, as it will calculate the day of the week and day of the
year.

Example

 printf("This is: ");
 switch (RTC_DOW) {
 case 0: printf("Sunday "); break;
 case 1: printf("Monday "); break;
 case 2: printf("Tuesday "); break;
 case 3: printf("Wednesday "); break;
 case 4: printf("Thursday "); break;
 case 5: printf("Friday "); break;
 case 6: printf("Saturday "); break;
 }
 printf(" %d/%d/%d \n",RTC_MONTH,RTC_DAY,RTC_YEAR);

The output would look like:

This is Friday 4/14/2006

See also

 DAY
 HOUR
 MINUTE
 MONTH
 SECOND
 TIMER
 WEEKDAY
 YEAR

Page 159

Alphabetical Keyword List

B

 BAUD

C

 COUNT

D

 DAY

 DIR

H

 HIGH

 HOUR

 HWPWM

I

 I2CIN

 I2COUT

 I2CSPEED

 IN

 INPUT

L

 LOW

M

 MINUTE

 MONTH

O

 OUTPUT

 OWIN

 OWOUT

P

 PULSIN

 PULSOUT

 PWM

R

 RCTIME

 RXD

S

 SECOND

 SERIN

 SEROUT

 SHIFTIN

 SHIFTOUT

 SLEEP

 SPIIN

 SPImode

 SPIOUT

T

 TXD

W

 WAIT

 WEEKDAY

Y

 YEAR

Page 160

AD

Syntax

extern int AD(int channel);
Description

ARMmite, ARMexpress LITE and ARMweb

AD will return 0..65472 that corresponds to the voltage on the pin corresponding to expression . The value
returned will have the top 10 bits being significant. (bits 5..0 will be 0). 0 would be read for 0V and 65472
for 3.3V.

An analog conversion on pin expression is performed. This process takes less than 6 usec.

Dual Use AD pins

ARMmite version

On reset or power up the AD pins are configured as AD inputs. To change those to digital IOs, the user
must individually specify a switch to digital using DIGITAL(IOpin) which is a #define for IOpins 16-23.

ARMexpress LITE version

The ARMexpress LITE supports up to 6 channels of AD converters.

On the ARMexpress LITE and ARMweb these pins are configured as digital IOs at reset, but must be
switched to AD using configAD(channel) which is a #define for channels 0-7.

 AD(0) IO(7)
 AD(1) IO(10)
 AD(2) IO(8)
 AD(3) not available
 AD(4) not available
 AD(5) IO(9)
 AD(6) IO(11)

 AD(7) IO(12)

Example

 temperature = AD(0) >> 6; // read a raw temperature voltage

See also

 TXD
 RXD

Page 161

configAD

Syntax

#define configAD(int channel);
Description

Dual Use AD pins

ARMexpress LITE version

The ARMexpress LITE supports up to 6 channels of AD converters.

On the ARMexpress LITE and ARMweb these pins are configured as digital IOs at reset, but must be
switched to AD using configAD(channel) which is a #define for channels 0-7.

 AD(0) IO(7)
 AD(1) IO(10)
 AD(2) IO(8)
 AD(3) not available
 AD(4) not available
 AD(5) IO(9)
 AD(6) IO(11)

 AD(7) IO(12)

Example

 configAD(1); // switch IO(10) to AD(1)

See also

 TXD
 RXD

Page 162

COUNT

Syntax

int COUNT(int pin, int duration);

Description

Count the number of pulses low-high-low or high-low-high on pin over a duration of milliseconds, returning
the value to variable.

Example

 printf("\n count pulses on pin 0 for 5 seconds\n");

 printf("%d pulses happened\n",COUNT(0, 5000));

See also

 RCTIME

Page 163

DAY

Syntax

RTC_DAY
void setDAY (x);

Description

Function setting or returning the day of the month.
Range 1 to 28, 29, 30, or 31
(depending on the month and whether it is a leap year).

Example

 printf("This is: ");
 switch (RTC_DOW) {
 case 0: printf("Sunday "); break;
 case 1: printf("Monday "); break;
 case 2: printf("Tuesday "); break;
 case 3: printf("Wednesday "); break;
 case 4: printf("Thursday "); break;
 case 5: printf("Friday "); break;
 case 6: printf("Saturday "); break;
 }
 printf(" %d/%d/%d \n",RTC_MONTH,RTC_DAY,RTC_YEAR);

The output would look like:

This is Friday 4/14/2006

See also

 DAY
 HOUR
 MINUTE
 MONTH
 SECOND
 TIMER
 WEEKDAY
 YEAR

Page 164

DIGITAL

Syntax

#define DIGITAL(int IOpin)
Description

Dual Use AD pins

ARMmite version

On reset or power up the AD pins are configured as AD inputs. To change those to digital IOs, the user
must individually specify a switch to digital using DIGITAL(IOpin) which is a #define for IOpins 16-23.

Example

 DIGITAL(4); // switch AD(4) to a digital pin accessed at IO(20)

See also

 TXD
 RXD

Page 165

DIR

Syntax

int DIR (int expression) ; // defined for port 0

int DIRx(int pin); // for pin 0-31 on port 0, pin 32-63 on port 1, pin 64-95 on port 2 ...

Description

DIR (expression) can be used to read the direction of the up to 32 configurable Port 0 pins. If DIR
(expression) is 1 then the corresponding pin is an output. If the value is 0 then that pin is an input.

With the SuperPRO and PROplus, NXP has added more configurable port pins. We are adopting their
convention for control of those pins. FIO0DIR, FIO1DIR, FIO2DIR, and FIO4DIR control the input/output
status. Writing 1 to a bit will make it an output. More details in the NXP user manuals.

Example

// Set pin 4 as an input
INPUT(4);

// Check the direction of pin 4
dir4 = DIR(4);

See also

 DIR
 HIGH
 IN
 INPUT
 LOW
 OUTPUT

Page 166

HIGH

Syntax

void HIGH (int pin); // defined for port 0

void HIGHx(int pin); // for pin 0-31 on port 0, pin 32-63 on port 1, pin 64-95 on port 2 ...
Description

HIGH will set the Port 0 pin corresponding to expression to a positive value (3.3V).

HIGH does not change the direction of the port 0 pin, ie. it must be set to an OUTPUT before HIGH has
any affect.

With the SuperPRO and PROplus, NXP has added more configurable port pins. We are adopting their
convention for control of those pins. FIO0SET, FIO1SET, FIO2SET, and FIO4SETwill set an output high
when written with a 1. More details in the NXP user manuals.

Example

// set pins 0 to 7 to output and low or to 0 V
for (i=0;i<8; i++) {
 OUTPUT(i);
 LOW(i);
}

for (i=0;i<8; i++) {
 WAIT(1000);
 OUTPUT(i);
 HIGH (i); // set each pin HIGH one after the other every second
}

See also

 DIR
 HIGH
 IN
 INPUT
 LOW
 OUTPUT

Page 167

HOUR

Syntax

RTC_HOUR

void setHOUR(int value);
Description

RTC_HOUR returns the hour of the real time clock.
Range 0 to 23.

setHOUR(x) will change the gour of the real time clock.
Example

 printf("%d:%02d:%02d",RTC_HOUR,RTC_MIN,RTC_SEC);

The output would look like:

13:15:30

See also

 DAY
 HOUR
 MINUTE
 MONTH
 SECOND
 TIMER
 WEEKDAY
 YEAR

Page 168

HWPWM

Syntax

void HWPWM (int cycletime,int itemCnt, int *hightimeList);

Description
ARMmite and Wireless ARMmite version

The ARMmite supports up to 8 channels of hardware driven PWM. The IO direction of the pin will be set
to output. Once programmed these will continue to generate the specified PWM until re-programmed or
reset.

Cycletime is in microseconds, is the time for a single PWM cycle. Hightimes are also in microseconds
and represent the amount of time during the cycle that the corresponding outputs are high. It is assumed,
but not enforced that cycletimes for all channels will be the same.

 channel1 IO(0)
 channel2 IO(1)
 channel3 IO(2)
 channel4 IO(3)
 channel5 IO(4)
 channel6 IO(9)
 channel7 IO(10)

 channel8 IO(11)

ARMmite PRO version

The ARMmite PRO also supports up to 8 channels of hardware driven PWM. The IO direction of the pin
will be set to output. Once programmed these will continue to generate the specified PWM until
re-programmed or reset.

Cycletime is in microseconds, is the time for a single PWM cycle. Hightimes are also in microseconds
and represent the amount of time during the cycle that the corresponding outputs are high. It is assumed,
but not enforced that cycletimes for all channels will be the same.

 channel1 IO(0)
 channel2 IO(1)
 channel3 IO(8)
 channel4 IO(5)
 channel5 IO(14)
 channel6 IO(10)
 channel7 IO(11)

 channel8 IO(3)

ARMexpress LITE version

The ARMexpress LITE supports up to 6 channels of hardware driven PWM. The IO direction of the pin will
be set to output. Once programmed these will continue to generate the specified PWM until
re-programmed or reset. 2 of the channels are not available on the pins.

Page 169

Cycletime is in microseconds, is the time for a single PWM cycle. Hightimes are also in microseconds
and represent the amount of time during the cycle that the corresponding outputs are high. It is
assumed, but not enforced that cycletimes for all channels will be the same.

 channel1 IO(5)
 channel2 IO(6)
 channel3 IO(3)
 channel4 not available
 channel5 IO(14)
 channel6 not available
 channel7 IO(13)

 channel8 IO(15)

SuperPRO version

The PROplus and SuperPRO support up to 6 channels of hardware driven PWM. The IO direction of the
pin will be set to output. Once programmed these will continue to generate the specified PWM until
re-programmed or reset.

Cycletime is in microseconds, is the time for a single PWM cycle. Hightimes are also in microseconds
and represent the amount of time during the cycle that the corresponding outputs are high. It is assumed,
but not enforced that cycletimes for all channels will be the same.

channel1 P2.0
channel2 P2.1
channel3 P2.2
channel4 P2.3
channel5 P2.4
channel6 P2.5

The LPC17xx series processors also have an additional 6 channels designed to drive motors. See details
in the Motor PWM Control chapter of the NXP LPC17xx User Manual. Also these pins can be re-assigned
as selected by the PINSEL registers.

Example

times[0] = -1
times[1] = 750
times[2] = 100
HWPWM (1000, 3, times) 'generate 1KHz 75% and 10% signals on pins 1,2

times[0] = 2000
times[1] = 1000
times[2] = 500
HWPWM (4000, 3, times) 'gen 250 Hz 50%, 25% and 12.5% signals on pins 0,1,2

See also

 FREQOUT
 PWM

Page 170

I2CIN

Syntax

void I2CIN (int sda_pin, int scl_pin, int slaveADDR, int opt1, int opt2, int opt3, int opt4, int opt5, int cnt ,
char *inList);

Description

I2CIN will read a series of bytes from an I2C slave device. sda_pin is any expression defining the SDA pin
to use. scl_pin will be designated the SCL pin. slaveADDR will select a device on the I2C bus.

Up to 5 optional byte values may be writen out prior to reading the inList . If the optX value is -1 then it will
not be sent out. Most i2c devices have a sub-address field that is written immediately before reading.
This field would be held in opt1. For devices that do not have a sub-address, opt1 can be set to -1. In
this case, no I2C write is performed before the I2CIN. For some slow i2c devices, they can not respond to
a write of sub-address, immediately followed by a read of the device. For these slow devices (often
implemented with a slower micro-processor), it is necessary to do seperate I2COUT and I2CIN with a
delay in between.

After any write of the optX ,a series of cnt bytes will be read from the slave to fill the character array inList
.

I2C is a byte oriented bus, so each transaction will either send a byte value (0 to 255) or receive a byte for
each element of the inList .

Data is shifted in at 350 Kbits/sec.

Example

 case 41: // test EEPROM 24LC02 on pins 0 == SDA and 1 == SCL
 shortMessage[0] = 0; // address into EEPROM
 for (i=1; i<8; i++) shortMessage[i] = 0x30+i; // set shortMessage to "1234567"
 present = I2COUT (0, 1, 0xA0,8, shortMessage);

 if (present == 0) printf("NO i2c device ***\n"); else printf("i2c device found\n");
 I2CIN(0, 1, 0xA0, 0, -1, -1, -1, -1, 7, shortResponse);

See also

 I2COUT

Page 171

I2COUT

Syntax

int I2COUT (int sda_pin, int scl_pin, int slaveADDR , int cnt, char *outList);

// I2COUT returns TRUE if the device was present and responding

Description

I2COUT will send a series of bytes from an I2C slave device. sda_pin is any expression defining the SDA
pin to use. scl_pin will be designated the SCL pin. slaveADDR will select a device on the I2C bus.

After that cnt bytes will be written to the slave from the character array outList.

I2C is a byte oriented bus, so each transaction will send a byte values (0 to 255) to an I2C slave. If the
value from an expr ession in the OutputList is larger than 8 bits, the MSBs will be truncated.

If a I2C device responds the function returns 1, else 0.

Data is shifted out at 350 Kbits/sec.

Example

 case 41: // test EEPROM 24LC02 on pins 0 == SDA and 1 == SCL
 shortMessage[0] = 0;
 for (i=1; i<8; i++) shortMessage[i] = 0x30+i; // set shortMessage to "1234567"
 present = I2COUT (0, 1, 0xA0, 8, shortMessage);

See also

 I2CIN

Page 172

I2CSPEED

Syntax

void I2CSPEED (int Kbits);

Kbits= 400 | 100 | 50
Description

The default speed for I2C operations is approx 350 Kbits, which is acceptable to most modern I2C chips.

In order to support older chips or longer cable runs, the I2C operations can be slowed down to 100 Kbits.

A very slow 50 Kb rate is also supported.

Example

I2CSPEED (100); // slow down the operation

See also

 I2CIN
 I2COUT

Page 173

IN

Syntax

int IN (int pin); // defined for port 0

int INx(int pin); // for pin 0-31 on port 0, pin 32-63 on port 1, pin 64-95 on port 2 ...
Description

IN returns the value on the Port 0 pin corresponding to expression.

0 is returned for 0V and -1 for 2.5V or above. Why -1 and 0? NOT(~) 0 is equal to -1.

With the SuperPRO and PROplus, NXP has added more configurable port pins. We are adopting their
convention for control of those pins. FIO0DIR, FIO1DIR, FIO2DIR, and FIO4DIR control the input/output
status. Writing 1 to a bit will make it an output. More details in the>NXP user manuals.

Example

 printf("Pin 15 is ");
 INPUT(15); // make pin 15 an INPUT

 printf("%d\n",IN(15)); // now read the value on that pin

See also

 DIR
 HIGH
 IN
 INPUT
 LOW
 OUTPUT

Page 174

INPUT

Syntax

void INPUT (int pin); // defined for port 0

void INPUTx(int pin); // for pin 0-31 on port 0, pin 32-63 on port 1, pin 64-95 on port 2 ...
Description

INPUT will set the Port 0 pin corresponding to expression to an input.

With the SuperPRO and PROplus, NXP has added more configurable port pins. We are adopting their
convention for control of those pins. FIO0DIR, FIO1DIR, FIO2DIR, and FIO4DIR control the input/output
status. Writing 1 to a bit will make it an output. More details in the NXP user manuals.

Example

 printf("Pin 15 is ");
 INPUT(15); // make pin 15 an INPUT

 printf("%d\n",IN(15)); // now read the value on that pin

See also

 DIR
 HIGH
 IN
 INPUT
 LOW
 OUTPUT

Page 175

LOW

Syntax

void LOW (int pin); // defined for port 0

void LOWx(int pin); // for pin 0-31 on port 0, pin 32-63 on port 1, pin 64-95 on port 2 ...
Description

LOW will set the Port 0 pin corresponding to expression to a negative value (0V) and then set it to an
output.

With the SuperPRO and PROplus, NXP has added more configurable port pins. We are adopting their
convention for control of those pins. FIO0CLR, FIO1CLR, FIO2CLR, and FIO4CLR will set an output low
when written with a 1. More details in the NXP user manuals.

Example

// set pins 0 to 7 to output and low or to 0 V
for (i=0;i<8; i++) {
 OUTPUT(i);
 LOW(i);
}

for (i=0;i<8; i++) {
 WAIT(1000);
 OUTPUT(i);
 HIGH (i); // set each pin HIGH one after the other every second
}

See also

 DIR
 HIGH
 IN
 INPUT
 LOW
 OUTPUT

Page 176

MINUTE

Syntax

RTC_MIN

void setMIN(int value);
Description

RTC_MIN returns the minute of the real time clock.
Range 0 to 59.

setMIN(x) will change the minute value of the real time clock.
Example

 printf("%d:%02d:%02d",RTC_HOUR,RTC_MIN,RTC_SEC);

The output would look like:

13:15:30

See also

 DAY
 HOUR
 MINUTE
 MONTH
 SECOND
 TIMER
 WEEKDAY
 YEAR

Page 177

MONTH

Syntax

RTC_MON
void setMON(x);

Description

Function setting or returning the month.
Range 1 to 12.

Example

 printf("This is: ");
 switch (RTC_DOW) {
 case 0: printf("Sunday "); break;
 case 1: printf("Monday "); break;
 case 2: printf("Tuesday "); break;
 case 3: printf("Wednesday "); break;
 case 4: printf("Thursday "); break;
 case 5: printf("Friday "); break;
 case 6: printf("Saturday "); break;
 }
 printf(" %d/%d/%d \n",RTC_MONTH,RTC_DAY,RTC_YEAR);

The output would look like:

This is Friday 4/14/2006

See also

 DAY
 HOUR
 MINUTE
 MONTH
 SECOND
 TIMER
 WEEKDAY
 YEAR

Page 178

OUTPUT

Syntax

void OUTPUT (int pin); // defined for port 0

void OUTPUTx(int pin); // for pin 0-31 on port 0, pin 32-63 on port 1, pin 64-95 on port 2 ...
Description

OUTPUT will set the Port 0 pin corresponding to expression to an output.

With the SuperPRO and PROplus, NXP has added more configurable port pins. We are adopting their
convention for control of those pins. FIO0DIR, FIO1DIR, FIO2DIR, and FIO4DIR control the input/output
status. Writing 1 to a bit will make it an output. More details in the NXP user manuals.

Example

 printf("LED on\n");
 OUTPUT(15);
 LOW(15);

See also

 DIR
 HIGH
 IN
 INPUT
 LOW
 OUTPUT

Page 179

OWIN

Syntax

void OWIN (int pin, int out1,int out2,int out3,int out4,int out5, int out6, int cnt, char *inList) ;

Description

OWIN begins with a RESET/Presence sequence on the designated Pin.

Then upto 6 Output bytes will be transfered to the device to select the command. Byte values are sent
out, if the value is -1, then that byte is not sent.

Following that cnt bytes will be read into the character array inList .

The bit order for the 1-Wire device is assumed to be LSB (bit 0) first.

Example

 present = OWOUT(7, 7, shortMessage);
 if (present) printf("one wire device found\n");
 else {printf("*** NO one wire device ***\n"); break;}

 OWIN(7, 0xCC, 0xAA, 0, -1, -1, -1, 4, shortResponse);

 for (i=0; i<4; i++) if (shortMessage[i+3] != shortResponse[i]) break;

See also

 OWOUT

Page 180

OWOUT

Syntax

int OWOUT (int pin, int cnt, char *outList) ;

// OWOUT returns TRUE if the device was present and responding

Description

OWOUT begins with a RESET/Presence sequence on the designated Pin.

Following that cntbytes of the character array outListwill be sent to the device.

The bit order for the 1-Wire device is assumed to be LSB (bit 0) first.

If a one-wire device responds the function returns 1, else 0.

Example

 case 40: // test the EEPROM of a DS2430 on pin 7
 shortMessage[0] = 0xCC;
 shortMessage[1] = 0x0F;
 shortMessage[2] = 0x00;
 shortMessage[3] = 0x44;
 shortMessage[4] = 0x11;
 shortMessage[5] = 0x22;
 shortMessage[6] = 0xBE;

 present = OWOUT(7, 7, shortMessage);
 OWIN(7, 0xCC, 0xAA, 0, -1, -1, -1, 4, shortResponse);

See also

 OWIN

Page 181

PULSIN

Syntax

int PULSIN (int pin, int state);

Description

Measure an input pulse on pin at level, returning the value.

The IO direction of pin will be set to input.

If pin is already at level when the function is called it will wait to a transition to the opposite level.

The function will wait 1 second for pin to go to level. The length of time is measured in microseconds(us).
The minimum pulse that can be measured is 1 microseconds. If pin does not go to level or remains at
level longer than 1 second 0 is returned.

Example

 case 32:
 prinf("\n Measure PULSIN on pin 0, four times as low pulse then high pulse\n");
 for (i=0; i<4; i++) {
 printf ("%d\n", PULSIN (0, 0));
 }
 for (i=0; i<4; i++) {
 printf ("%d\n", PULSIN (0, 1));
 }

See also

 RCTIME
 COUNT

Page 182

PULSOUT

Syntax

void PULSOUT (int pin, int duration);

Description

Generate an output pulse on pin for microseconds.

The IO direction of pin will be set to output. The level of the output will be switched, driven for
microseconds, then switched back to its initial level. The minimum pulse period is 1 microseconds.

Example

 printf("Flash LED for 250ms off for 500ms\n");
 OUTPUT(15);
 HIGH(15);
 for (i=0; i<20; i++) { PULSOUT (15,250000); WAIT (500);}

See also

 PULSIN

Page 183

PWM

Syntax

void PWM(int pin, int duty, int duration);

Description

Generate an analog signal on pin for milliseconds with a duty cycle of 0 to 255.
A duty cycle of 255 corresponds to an output value of 100%.

The IO direction of the pin will be set to output, the PWM pulse train is output, and then the pin is set to
tristate (input). If the pin is connected to an RC filter, then the voltage will stay on the capacitor for a
period of time determined by the load.

Example

 printf("Ramp thru PWM on LED\n");
 for (i=0; i<256; i++) PWM (15,255-i,20);

See also

 FREQOUT
 PULSOUT

Page 184

RCTIME

Syntax

int RCTIME(int pin, int state) ;

Description

Measure the time which pin remains at state, returning the value to variable.
The length of time is measured in microseconds(us). The minimum time measured is 1 microseconds.
If pin is not at level when the function is called variable is set to 1.
If pin remains at level longer than 1 second variable is set to 0.

Example

 printf("\n check RCTIME into a 700ohm 0.1uF drive on 14, sense on 13\n");
 OUTPUT (14);
// while(1) {HIGH(14);WAIT(1);LOW(14);WAIT(1);} // scope loop

 HIGH (14);
 printf("high to low ");
 WAIT(10); // make sure line is high
 LOW(14);
 printf("%d microseconds, high to low ",RCTIME (13, 1));
 WAIT(10); // make sure line is low
 HIGH (14);
 printf("%d microseconds, low to high\n", (RCTIME (13, 0));

 check RCTIME into a 700ohm 0.1uF drive on 14, sense on 13
high to low 89 microseconds, high to low 56 microseconds, low to high

See also

 PULSIN

Page 185

RXD

Syntax

int RXD (int pin);

int RXD0(); // for UART0 access

int RXD1(); // for UART1 access

Description

RXD (pin) will receive a single byte of data that is shifted as an asynchronous serial stream. This function
is similar to SERIN, but is a more efficient implementation. The baudrate for the pin should be set before
using RXD, that is done by setting the SERbauds[] array.

RXD will timeout after 0.5 seconds and return -1. These routines are "bit-banged" by the processor, so the
processor is consumed during these operations. Interupts are also disabled during each byte for these
operations.

The 0.5 second timeout can be changed by SERINtimeout.

Baudrate can be upto 115.2Kb.

UART0 UART1 support-

For RXD0 data is received on the SIN pin. SIN and SOUT are always negative true. UART0 of the
LPC21xx, RXD1 for UART1.

For ARMexpress modules baudrates for RXD0 can be upto 19.2 Kbaud as it is limited by the level
translators. No limit for ARMmite/ARMweb Use setbaud() routine to set this baud.

Example

 while (1) {
 ch = RXD(4);
 if (ch != -1) printf("%c", ch);
 if (ch == 'Q') break;
 } // receive and echo characters from testjig

See also

 setbaud
 TXD
 SERIN

Page 186

SECOND

Syntax

RTC_SEC

void setSEC(int value);
Description

RTC_SEC returns the second value of the real time clock.
Range 0 to 59.

setSEC(x) will set the SECOND value of the real time clock
Example

 printf("%d:%02d:%02d",RTC_HOUR,RTC_MIN,RTC_SEC);

The output would look like:

 13:15:30

See also

 DAY
 HOUR
 MINUTE
 MONTH
 TIMER
 WEEKDAY
 YEAR

Page 187

SERbauds, setbaud

Syntax

extern int SERbauds[];

void setbaud (int channel, int baudDiv); // for UART0 and UART1

Description

This array contains the baud rates for up to 32 IOs. It is used when RXD or TXD routines are called.

Baudrates can be upto 115.2 Kbaud.

The UART0, UART1 hardware channel baudrate can be set by calling-

void setbaud(0, baudDiv); // baudDiv = 15000000 / baudrate / 16 -- for example 19.2Kb is 49 for
ARMmite, ARMexpress, and ARMweb

void setbaud(1, baudDiv); // baudDiv = 25000000 / baudrate / 16 -- for example 19.2Kb is 81
forSuperPRO and PROplus

For the ARMexpress SIN and SOUT are limited by the level translators to 19.2Kbaud. This last limit does
not apply to the SuperPRO, PROplus, ARMmite or ARMweb.

Example

 SERbauds[4] = 19200;
 SERbauds[3] = SERbauds[4];

 setbaud (1, 17); // set UART1 baudrate to 56Kb

See also

 TXD
 RXD

Page 188

SERIN

Syntax

void SERIN (int pin, int baudrate, int posTrue, char cnt, char *inList);

Description

SERIN receives cnt bytes as asynchronous serial data on pin at a baudrate and saves the data into inList
 .

PosTrue if set to 0 then the data is inverted.

inList is a pointer to a character array.

SERIN will timeout after 0.5 seconds and return -1 and 255 in the next item in the inList before the
timeout. These routines are "bit-banged" by the processor, so the processor is consumed during these
operations. Interupts are also disabled during each byte for these operations.

The 0.5 second timeout can be changed by SERINtimeout.

Baudrates can be upto 115.2 Kbaud for all pins.

For UART0 support use-

int getline(char *line, int max_len) ;

For ARMexpress modules baudrates for RXD0 can be upto 19.2 Kbaud as it is limited by the level
translators. No limit for ARMmite/ARMweb Use setUART0baud() routine to set this baud.

Example

 while (1) {
 SERIN (4,19200,1, 1, shortMessage);
 if (shortMessage[0] != 255) printCh(shortMessage[0]);
 if (shortMessage[0] == 'Q') break;
 } // receive and echo characters from testjig

See also

 SEROUT
 SERINtimeout

Page 189

SERINtimeout

Syntax

extern int SERINtimeout;

Description

The default time that SERIN waits for input on pins 0-31 is 0.5 seconds.

This may be changed using this statement. The timeout will be set in micro-seconds.

Example

// set the timeout shorter on for polling an LCD/keypad combination to 100 ms
SERINtimeout = 100000;
 ...

proc GetKey() {
 LCDcmd[0] = 24;
 LCDlen = 0;
 GenCRC();
 SEROUT (1,LCDbaud,1,LCDlen+3,LCDcmd);
 SERIN (1,LCDbaud,1,3,LCDcmd);
}

See also

 SERIN
 SEROUT

Page 190

SEROUT

Syntax

void SEROUT (int pin,int baudrate, int posTrue,int cnt, char *outList);

Description

SEROUT sends cnt bytes pointed to by outList out as asynchronous serial data on pin at a baudrate.
PosTrue if set to 0 then the data is inverted.

outListis a character array.

These routines are "bit-banged" by the processor, so the processor is consumed during these
operations. Interupts are also disabled during each byte for these operations.

Baudrates can be upto 115.2 Kbaud for all pins

UART0 support-

Use printf or TXD0. The hardware serial port routines are used, so the CPU is not tied up. So when a byte
is sent it is placed into the UART FIFO, but if the 16 byte FIFO is full then the CPU will wait until space is
available.

For ARMexpress modules baudrates for RXD0 can be upto 19.2 Kbaud as it is limited by the level
translators. No limit for ARMmite/ARMweb Use setUART0baud() routine to set this baud.

Example

 shortMessage[0] = 0x33;
 shortMessage[1] = 0x34;
 shortMessage[2] = 0x35;

 SEROUT(3,19200, 1, 3, shortMessage); // send 123 to the testjig serial connection

See also

 SERIN

Page 191

SERbauds, setbaud

Syntax

extern int SERbauds[];

void setbaud (int channel, int baudDiv); // for UART0 and UART1

Description

This array contains the baud rates for up to 32 IOs. It is used when RXD or TXD routines are called.

Baudrates can be upto 115.2 Kbaud.

The UART0, UART1 hardware channel baudrate can be set by calling-

void setbaud(0, baudDiv); // baudDiv = 15000000 / baudrate / 16 -- for example 19.2Kb is 49 for
ARMmite, ARMexpress, and ARMweb

void setbaud(1, baudDiv); // baudDiv = 25000000 / baudrate / 16 -- for example 19.2Kb is 81
forSuperPRO and PROplus

For the ARMexpress SIN and SOUT are limited by the level translators to 19.2Kbaud. This last limit does
not apply to the SuperPRO, PROplus, ARMmite or ARMweb.

Example

 SERbauds[4] = 19200;
 SERbauds[3] = SERbauds[4];

 setbaud (1, 17); // set UART1 baudrate to 56Kb

See also

 TXD
 RXD

Page 192

SHIFTIN

Syntax

void SHIFTIN (int in_pin, int clk_pin, int mode, int cnt, int *wordList , int bitLengths) ;
Description

SHIFTIN has been kept as a compatable function with PBASIC. It can be used for devices that are not
covered by SPI, I2C or 1-Wire. Data is shifted in on in_pin, and a positive clock is sent on clk_pin for
each bit.

While most other hardware functions use bytes, SHIFTIN is oriented for bit control. The length of each
variable defines the number of bits that will be shifted out (2 - 32). For each word bitLengths bits will be
shifted in.

 Mode = 0 data is shifted in MSB first, and sampling starts before the first clock pulse
 Mode = 1 data is shifted in LSB first, and sampling starts before the first clock pulse
 Mode = 2 data is shifted in MSB first, and sampling starts before the second clock pulse
 Mode = 3 data is shifted in LSB first, and sampling starts before the second clock pulse

SHIFTIN fills the integer array wordList . cnt integers will be shifted in.

Data is shifted in at 600 Kbits/sec.

Example

 printf("FPU SHIFT test\n"); for (i= 0; i<10; i++) wordMessage[i]= 0xFF;
 wordMessage [i] = 0;
 SHIFTOUT (14,15,MSBFIRST,11,wordMessage, 8); // reset FPU
 WAIT (10); wordMessage [0] = 0xF0; // sync character
 SHIFTOUT (14,15,MSBFIRST,1,wordMessage, 8); // sync FPU
 save_time = TIMER;
 while ((TIMER - save_time) < 15) ; // wait 15 uSec

 SHIFTIN (14,15, MSBPRE, 1,wordMessage, 8); // get 1 byte status back
 if (wordMessage[0] != 0x5C) {
 printf(%x "FPU found\nwordMessage[0]);
 break;
 }

See also

 SHIFTOUT
 SPIIN

Page 193

SHIFTOUT

Syntax

void SHIFTOUT (int out_pin, int clk_pin, int mode, int cnt , int *wordList, int bitLengths) ;
Description

SHIFTOUT has been kept as a compatable function with PBASIC. It can be used for devices that are not
covered by SPI, I2C or 1-Wire. Data is placed on out_pin and the clk_pin is pulsed each bit.

While most other hardware functions use bytes, SHIFTOUT is oriented for bit control. The length of each
variable defines the number of bits that will be shifted out (2 - 32). For each element bitLengths bits are
shifted out.

 Mode = 0 data is shifted out LSB first
 Mode = 1 data is shifted out MSB first

SHIFTOUT uses values from the interger array wordList. cnt integers will be shifted out.

Data is shifted out of the device at 800 Kbits/sec.

Example

 printf("FPU SHIFT test\n"); for (i= 0; i<10; i++) wordMessage[i]= 0xFF;
 wordMessage [i] = 0;
 SHIFTOUT (14,15,MSBFIRST,11,wordMessage, 8); // reset FPU
 WAIT (10); wordMessage [0] = 0xF0; // sync character
 SHIFTOUT (14,15,MSBFIRST,1,wordMessage, 8); // sync FPU
 save_time = TIMER;
 while ((TIMER - save_time) < 15) ; // wait 15 uSec

 SHIFTIN (14,15, MSBPRE, 1,wordMessage, 8); // get 1 byte status back
 if (wordMessage[0] != 0x5C) {
 printf("%x No FPU found\n",shortResponse[0]); break;
 }
 printf("FPU found\n");

See also

 SHIFTIN
 SPIIN

Page 194

SPIIN

Syntax

void SPIIN (int CS_pin,int in_pin,int clk_pin,int out_pin, int out1, int out2, int out3, int cnt, char *InputList);

Description

SPIIN supports the loosely defined serial protocol used by a variety of manufacturers. The desired device
is selected by asserting CS_pin LOW. If there is no CS_pin , the value should be set to -1.

In the simplest case, in_pin is used to input data clocked by clk_pin, to fill the character array InputList
with cnt bytes.

In bi-directional cases, out1..out3 byte values will be output on out_pin before reading the InputList . If not
used, those should be set to -1. It is also allowable to have in_pin equal to out_pin , in which case that
pin will be driven for the out1..out3 and then converted to an input for in_pin .

Data is shifted in LSB first and each element of the InputList is filled with a byte of data. To use negative
edge clocks or MSB first, the default SPImode may be changed.

Data is shifted in at 600 Kbits/sec.

Example

 case 42: // check MicroMega FPU status
 // clock on pin 15 and bi-directional data on 14, no CS used
 SPImode = 0; // FPU uses MSB first -- positive clock
 for (i=0; i<10; i++) shortMessage[i]= 0xFF;
 shortMessage [i] = 0;
 SPIOUT (-1,14,15,11,shortMessage); // reset FPU
 WAIT (10);

 shortMessage [0] = 0xF0; // sync character
 SPIOUT (-1,14,15,1,shortMessage); // sync FPU
 save_time = TIMER;
 while ((TIMER - save_time) < 15) ; // wait 15 uSec
 SPIIN (-1,14,15, -1,-1,-1,-1, 1,shortResponse); // get 1 byte status back

 if (shortResponse[0] != 0x5C) {
 printf("%x No FPU found\n",shortResponse[0]);
 break;
 }
 printf("FPU found\n");

See also

 SPIOUT
 SPImode

Page 195

SPImode

Syntax

extern char SPImode;

Description

SPImode will change the bit order and clock sense for all suceeding SPI commands or until SPImode is
changed again.

 SPImode= 0 data is shifted in MSB first, and sampling starts before the first rising clock edge
(positive true clock)

 SPImode= 1 data is shifted in LSB first, and sampling starts before the first rising clock edge.
(positive true clock) (default value)

 SPImode= 2 data is shifted in MSB first, and sampling starts before the second clock pulse
 SPImode= 3 data is shifted in LSB first, and sampling starts before the second clock pulse

Example

 case 42: // check MicroMega FPU status
 // clock on pin 15 and bi-directional data on 14, no CS used
 SPImode = 0; // FPU uses MSB first -- positive clock
 for (i=0; i<10; i++) shortMessage[i]= 0xFF;
 shortMessage [i] = 0;
 SPIOUT (-1,14,15,11,shortMessage); // reset FPU
 WAIT (10);

 shortMessage [0] = 0xF0; // sync character
 SPIOUT (-1,14,15,1,shortMessage); // sync FPU
 save_time = TIMER;
 while ((TIMER - save_time) < 15) ; // wait 15 uSec
 SPIIN (-1,14,15, -1,-1,-1,-1, 1,shortResponse); // get 1 byte status back

 if (shortResponse[0] != 0x5C) {
 printf("%x No FPU found\n",shortResponse[0]); break;
 }
 printf("FPU found\n");

See also

 SPIOUT
 SPImode

Page 196

SPIOUT

Syntax

void SPIOUT (int CSpin, int out_pin, int clk_pin, int cnt, char *OutputList);
Description

SPIOUT supports the loosely defined serial protocol used by a variety of manufacturers. The desired
device is selected by asserting CSpin LOW. If there is no cspin, the value should be set to -1.

In the simplest case, out_pin is used to output data clocked by clk_pin, from the OutputList. CSpin,
out_pin and clk_pin are left as and outputs.

Data is shifted out LSB first and each element of the OutputList is treated as a byte. This order can be
changed with SPImode.

Data is shifted out at 800 Kbits/sec
Example

 shortMessage [0] = 0xF3; // get version
 SPIOUT (-1,14,15,1,shortMessage); // sync FPU
 INPUT (14); // allow FPU to drive this bidirectional line
 while (IN(14)); // wait for FPU to drive that line low
 shortMessage [0] = 0xF2; // get string back
 SPIOUT (-1,14,15,1,shortMessage); // sync FPU
 save_time = TIMER;
 while ((TIMER - save_time) < 15) ; // wait 15 uSec
 while (1) {
 SPIIN (-1,14,15, -1,-1,-1,-1, 1,shortResponse); // get 1 byte at a time back and print it
 if (shortResponse[0] == 0) break;
 printf("%x\n",shortResponse[0]);
 }

See also

 SPIIN

Page 197

TIMER

Syntax

TIMER
Description

TIMER is a free running timer that increments every microsecond. It is readable using this keyword.
You can also write to the TIMER register.

Operations that require more precise timing should use the dedicated hardware routines, as interupts that
are occuring for other time functions and serial input may make times using TIMER look longer than
actual.

Example

 int save_time; // must be signed to handle roll-over

 save_time = TIMER;
 while ((TIMER - save_time) < 15) ; // wait 15 uSec

 TIMER = 0; // reset the free running timer

See also

 DAY
 HOUR
 MINUTE
 MONTH
 SECOND
 TIMER
 WEEKDAY
 YEAR

Page 198

TXD

Syntax

void TXD (int pin, int byte); // for bit-banged version on any pin

void TXD0(int byte); // for hardware support

void TXD1(int byte); // for UART1

Description

TXD (pin, byte) will send a single byte of data that is shifted out as an asynchronous serial stream on pin
. This function is similar to SEROUT, but is a more efficient implementation. The baudrate for the pin
should be set before using TXD, that is done setting the SERbauds[] array.

These routines are "bit-banged" by the processor, so the processor is consumed during these
operations. Interupts are also disabled during each byte for these operations.

UART0 UART1 support-

The hardware serial port routines are used, so the CPU is not tied up. So when a byte is sent it is placed
into the UART FIFO, but if the 16 byte FIFO is full then the CPU will wait until space is available.

For ARMexpress modules baudrates for RXD0 can be upto 19.2 Kbaud as it is limited by the level
translators. No limit for ARMmite/ARMweb Use setUART0baud() routine to set this baud.

Example

 TXD(3,'a'); TXD(3,'b'); TXD(3,'c'); // send out abc

See also

 setbaud
 RXD
 SEROUT

Page 199

WAIT

Syntax

WAIT(milliseconds) ;

Description

Delay program execution a number of milliseconds.
1000 milliseconds is one second

Example

 case 42: // check MicroMega FPU status -- clock pin 15 and data on 14, no CS used
 printf("FPU SPI test\n");

 SPImode = 0; // FPU uses MSB first -- positive clock
 for (i=0; i<10; i++) shortMessage[i]= 0xFF;
 shortMessage [i] = 0;
 SPIOUT (-1,14,15,11,shortMessage); // reset FPU
 WAIT (10); // allow recovery time - 10 milliseconds

See also

 TIMER
 SLEEP

Page 200

WEEKDAY

Syntax

RTC_DOW
Description

This hardware register maintains the day of the week. 0 corresponding to Sunday through 6 corresponding
to Saturday

This value will be set when the setYEAR routine is called, it is counted from a known date.

Example

 printf("This is: ");
 switch (RTC_DOW) {
 case 0: printf("Sunday "); break;
 case 1: printf("Monday "); break;
 case 2: printf("Tuesday "); break;
 case 3: printf("Wednesday "); break;
 case 4: printf("Thursday "); break;
 case 5: printf("Friday "); break;
 case 6: printf("Saturday "); break;
 }

The output would look like:

This is Friday

See also

 DAY
 HOUR
 MINUTE
 MONTH
 SECOND
 TIMER
 WEEKDAY
 YEAR

Page 201

YEAR

Syntax

RTC_YEAR

void setYEAR (x};

Description

Function setting or returning the year.

When setting the date, the year should be set last, as it will calculate the day of the week and day of the
year.

Example

 printf("This is: ");
 switch (RTC_DOW) {
 case 0: printf("Sunday "); break;
 case 1: printf("Monday "); break;
 case 2: printf("Tuesday "); break;
 case 3: printf("Wednesday "); break;
 case 4: printf("Thursday "); break;
 case 5: printf("Friday "); break;
 case 6: printf("Saturday "); break;
 }
 printf(" %d/%d/%d \n",RTC_MONTH,RTC_DAY,RTC_YEAR);

The output would look like:

This is Friday 4/14/2006

See also

 DAY
 HOUR
 MINUTE
 MONTH
 SECOND
 TIMER
 WEEKDAY
 YEAR

Page 202

Hardware Specs

Hardware Specs
 ARMmite Pin Diagram
 ARMmite Schematic
 ARMexpLITE Pin Diagram
 ARMexpLITE Schematic
 ARMexpress Pin Diagram
 ARMexpress Schematic
 EvalPCB Schematic
 Suggested RS232 connection

 TTL and other interfacing
 Serial Configuration
 Power
 Timing
 SPI,Microwire
 Using the I2C Bus
 ARM Peripheral Use

Page 203

http://www.coridiumcorp.com

ARMmite Pin Description

24 pins available to the user, 8 of which can be analog inputs

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7
IO8
IO9
IO10
IO11

IO14
IO15

P0.9
P0.8
P0.30
P0.21
P0.20
P0.29
P0.4
P0.5
P0.6
P0.7
P0.13
P0.19

P0.16
P0.15

RXD1
TXD1

EINT0
EINT2

PWM1
PWM2
PWM3
PWM4
PWM5

PWM6
PWM7
PWM8

Input/Outputs -- user controlled

0-3.3V level

4mA drive when configured as Outputs

5V tolerant - use limiting resistor when connecting to a 5V supply

IO15 connected to LED

IO12
IO13

P0.18
P0.17

Input/Outputs -- user controlled

Open drain 4mA pulldown when configured as Outputs

5V tolerant

AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7

P0.22
P0.23
P0.24
P0.10
P0.11
P0.12
P0.25
P0.26

IO16
IO17
IO18
IO19
IO20
IO21
IO22
IO23

10 bit A/D inputs

may also be used as digital Input/Outputs IO(16-23) -- user controlled

when used as analog lines, voltage levels should not exceed 3.3V

Dual Use AD pins

On reset or power up the AD pins are configured as AD inputs. To change those to digital IOs, the user
must individually specify a control direction using INPUT x, OUTPUT x, DIR(x), or IO(x) commands. After
that they will remain digital IOs until the next reset or power up.

PWM pins

All pins can be used for the software PWM function, and 8 pins can be used for the hardware driven
HWPWM function.

Page 204

Battery Real Time Clock

The ARMmite board is designed to accept a Panasonic ML2020/H1C rechargeable Lithium battery at
position BT1. This battery powers the real time clock of the LPC2103. The contents of RAM is not kept
alive while running on battery, and the CPU restarts the user program in Flash when power is restored.
This battery is designed to maintain power for a few days without power, and will recharge fully in about 1
day.

Power connection

Power when not being supplied by a USB connection uses a 2.1mm barrel connector (Cui
PJ-002A). Diodes allow both USB and seperate power to be connected simultaneously. If you are using
an unregulated wall transformer, you must check the open circuit voltage and it MUST be less than 12V.

REV 3

Page 205

Page 206

When USB power is not used, a 5-12V supply is required. If 5V is required for some portion of your
circuit, it is suggested that a regulated 5V supply be used for input power. These are available from
SparkFun.

Page 207

http://www.sparkfun.com/commerce/product_info.php?products_id=8269

Page 208

A push button switch and pullup resistor can also be mounted (connected to IO(2)). The optional battery
for the real time clock (Panasonic ML2020) can be mounted on the back of the PCB. The VL2020/HFN
will also work, though it is more expensive and has less power.

REV 2

Page 209

Page 210

Page 211

Page 212

suggested terminal strip On Shore Tech ED550/12DS or equivalent 3.5mm pitch connector (available at
Digikey)

Page 213

Page 214

ARMmite PRO Pin Description

The ARMmite PRO is footprint and pin compatible with the Arduino PRO. In addition it has an onboard 5V
regulator so it is compatible with 5V shield boards.

BASIC or C programs can be downloaded using the installed test connector using the USB dongle contained
in Coridium's evaluation kit or using the SparkFun USB Basic Breakout board or FTDI cable from
MakerShed. More details on these connections here.

Pins available to the user, 7 of which can be analog inputs

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7
IO8
IO9
IO10
IO11
IO12
IO13
IO14

P0.9
P0.8
P0.27
P0.19
P0.28
P0.21
P0.5
P0.29
P0.30
P0.16
P0.7
P0.13
P0.4
P0.6
P0.20

RXD1
TXD1

EINT0

PWM1
PWM2

PWM8

PWM4

PWM3

PWM6
PWM7

PWM5

Input/Outputs -- user controlled

0-3.3V level

4mA drive when configured as Outputs

5V tolerant - use limiting resistor when connecting to a 5V supply

IO15 P0.15 EINT2 IO15 connected to LED -- no other connection

AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7*

P0.22
P0.23
P0.24
P0.10
P0.11
P0.12
P0.25
P0.26

IO16
IO17
IO18
IO19
IO20
IO21
IO22
IO23

10 bit A/D inputs

may also be used as digital Input/Outputs IO(16-23) -- user controlled

when used as analog lines, voltage levels should not exceed 3.3V

AD6 connected to Arduino AREF pin
AD7 connected to a via

Dual Use AD pins

On reset or power up the AD pins are configured as AD inputs. To change those to digital IOs, the
user must individually specify a control direction using INPUT x, OUTPUT x, DIR(x), or
IO(x) commands. After that they will remain digital IOs until the next reset or power up.

The LPC2103 does not support an external reference for the A/D converters, so the Arduino AREF pin
is connected to a seventh converter, AD(6).

PWM pins

Page 215

http://www.sparkfun.com/commerce/product_info.php?products_id=8772
http://www.makershed.com/ProductDetails.asp?ProductCode=TTL232R

All pins can be used for the software PWM function, and 8 pins can be used for the hardware driven
HWPWM function.

Digital IO connections

REV4

The major change for rev 4 is to add a parallel connection for the 8 IOs IO(8)-IO(13), GND and IO(22) that
is on 0.1" centers in relation to the other connections.

In addition the loadC jumper was rotated 90 degrees to make room for this extra connection. And it is
also easier to add a battery to the board, by making 1 cut, and adding a diode, resistor and battery
(details below).

REV 3

Page 216

Picture is for the Rev 3 production board. On the Rev 1, IO(23) is available on the via next to AD(5)/IO(21).

Analog connections

Page 217

Picture is for the Rev 3 production board. On the Rev 1, AD(7) is available on a via next to AD(5).

Dual Serial Ports

Where the Arduino has only a single serial port, the ARMmite PRO has 2 UARTs. The second UART
is connected to IO pins 0 and 1. This allows it to be used simultaneously with the first UART acting as
a debug port. In the Arduino, the debug port is connected to these 2 IOs. To allow for this connection
as well, the ARMmite PRO has 2 shorting bridges that can be shorted to make this connection.

Page 218

Power connections

The board is shipped with a 2mm power jack compatible with a JST PHR/S2B or SparkFun PRT8671
or various battery packs from SparkFun.

Pads for a Cui PJ-002A or SparkFun PRT-119 power connector are available in the lower left hand
corner.

For both battery and 6V input, 2 pin 0.1" spaced holes are available for wires or headers. When using
the battery connector, total current draw for the board must be limited to 200mA. If you want to use
more currrent, you should install a jumper around the D2 diode (holes are available above D2).

Diode steering allows power to be supplied from a barrel connector from a 6V unregulated source, 5V USB
test connector, or the battery connector. Because of the Schottky diodes, all 3 power sources can be
connected simultaneously. If you are using an unregulated wall transformer, you must check the open
circuit voltage and it MUST be less than 12V.

When the 6V source is used, 5V Arduino shields can be powered from the ARMmite PRO.

The schematic describes this circuit

Page 219

http://search.digikey.com/scripts/dksearch/dksus.dll?pname&site=us;lang =en&wt.mc_id=Dxn_US_T091_Catlink;name=455-1165-ND
http://www.sparkfun.com/commerce/product_info.php?products_id=8671
http://www.sparkfun.com/commerce/product_info.php?products_id=119

The full schematic can be seen here

Power connections details

Page 220

The 3.3V regulator can supply 50 mA, with most being used by the LPC2103. The 3.3V connection next
to RESn on the lower power connector is only connected if the shorting pads are shorted (NOT the factory
default).

The analog GND should be used to connect to the GND of analog inputs. Digital and Analog GNDs are
connected together with a small trace, but to minimize noise you should use the analog GND only for
analog signals.

Vdrive connection (added in rev 2)

A connection for the Vdrive has been added so it is easy to use an ARMmite PRO to do data logging to a
USB Flash. So all that is required is a Vdrive and a 2mm header .

Page 221

http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=768-1003-ND
http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=S5800-08-ND

Jumpers and test connector for Program Download

The USB Dongle from Coridium will supply 5V from the USB to power the ARMmite PRO. It also controls
the RESET and BOOT signals to automatically load C or BASIC programs using MakeItC or BASICtools.
It is NOT necessary to install the load C jumper when using the USB Dongle from Coridium.

When using the SparkFun FTDI Basic Breakout Board, a limited amount of power can be supplied from
the BBB, but this is limited to 50 mA and after diode drops, its about 2.8V to the LPC2103. In practice
this will run, but it is outside the part specifications, so it should be limited in use.

Also with the SparkFun FTDI Basic Breakout Board to load a C program, the LOAD C jumper needs to be
installed, then removed to run the program. BASIC programs can be loaded and controlled using the
SparkFun board, with no additional steps/jumpers.

Page 222

An alternative is to use a 2 pin header with a shorting block (pictured below)

Real Time Clock Oscillator

The ARMmite PRO uses ceramic resonator, which has a 1% accuracy. But there is a provision to load a
32 KHz cyrstal and 2 cap to use that for the Real Time Clock.

Page 223

The crystal should be a 32.768 KHz can type, and depending on the rating the capacitors are 0603 size
18-27pF.

If you install this, include the following at the start of your program.

 #define RTC_CCR * &HE0024008

 RTC_CCR = &H11 ' clock the RTC with the 32 KHz crystal

Rev 4 version of the board makes it easier to add a battery. First cut the trace indicated below, then install a
Schottky Diode, 180 ohm resistor and Panasonic ML2020H as shown below. The VL2020/HFN will also
work, though it is more expensive and has less power.

Page 224

BASICboard Pin Diagram

The BASICchip is a complete System on a Chip, all that is required is 2.5 through 3.3V power and GND.
Then just wire the available IOs into your application. No extra crystals, external memories, or second
supplies required.

BASIC function pin # alt notes

IO(39) TXD(0) 16 P1(7) Serial Output, TTL compatible (active high) -- debug connection

IO(38) RXD(0) 15 P1(6) Serial Input, TTL compatible (active high) -- debug connection

 /RES 23 P0(0) RESET (internal pull-up) (active low)

IO(1) BOOT 24 P0(1) when LOW during reset, ISP is started which disables BASIC
(connects to LED and resistors on board)

IO(4)
IO(5)

SCL
SDA

27
5

open drain outputs, can only pull down, require a pull-up resistor to
drive high

IO(2)
IO(3)
IO(6)
IO(7)
IO(8)
IO(9)
IO(10)
IO(11)

P0(2)
P0(3)
P0(6)
P0(7)
P0(8)
P0(9)
P0(10)
P0(11)

25
26
6
28
1
2
3
4 AD(0)

Input/Outputs -- user controlled - 0-3.3V level

4mA drive when configured as Outputs

P0.7 has a 20 mA driver

5V tolerant - use limiting resistor when connecting to a 5V supply

IO(32) P1(0) 9 AD(1) Input/Outputs -- user controlled

Page 225

IO(33)
IO(34)
IO(35)
IO(36)
IO(37)
IO(40)
IO(41)

P1(1)
P1(2)
P1(3)
P1(4)
P1(5)
P1(8)
P1(9)

10
11
12
13
14
17
18

AD(2)
AD(3)
AD(4)
AD(5)

0-3.3V level

4mA drive when configured as Outputs

5V tolerant - use limiting resistor when connecting to a 5V supply

 XTAL 19
20

 optional crystal connection -- do not exceed 1.8V

 VDD 21 Power 2.5-3.3V input power -- do not exceed 3.3V

 GND 22 Ground (0V)

 AVDD 7 Analog power, must be equal to or less than VDD

 AGND 8 Analog Ground (0V)

1These pins P0(4) and P0(5) are open-drain, when configured as outputs they can only pull down.

Port P1(x) pins can be accessed using the P1(x) keyword. They can also be accessed using IO, IN,
OUT, and DIR with indexes 32-41.

Analog Inputs

Power Connections

Page 226

Optional Crystal

The LPC1114 has an internal 12 MHz oscillator that is trimmed to 1% accuracy. This is good enough for
most operations, including serial communication. If more accuracy is desired, then add an optional 12
MHz crystal at Y1 and C7 and C8 with 18pF capacitors.

JP1 option

JP1 in the upper right can have a 2 pin header installed by the user, When this jumper is installed (using
a 2 pin shorting block), the control lines from the USB are disabled, so that the board can be plugged into
a PC and no matter what state the PC is in, as long as the power is on the BASIC program will start up
and run on the ARM.

Page 227

SuperPRO Pin Description

PROplus Pin Description

The SuperPRO is footprint and pin compatible with the Arduino PRO. In addition it has an onboard 5V
regulator so it is compatible with 5V shield boards.

BASIC or C programs can be downloaded using the installed test connector using the USB dongle contained
in Coridium's evaluation kit or using the SparkFun USB Basic Breakout board or FTDI cable from
MakerShed. More details on these connections here.

Digital IO connections -- rev 5

The rev 5 adds a parallel connection for pins that are on 0.1" centers. This artwork is also shared with the
PROplus version of the board.

The SuperPRO uses an LPC1756 and has 5V and 3.3V supplies.

The simpler PROplus uses an LPC1751 and has only the 3.3V supply.

Port pins can be controlled by access with the FIOxPIN, FIOxDIR, FIOxSET and FIOxCLR registers.
More details on the GPIOs can be found in the NXP User Manual.

Page 228

http://www.sparkfun.com/commerce/product_info.php?products_id=8772
http://www.makershed.com/ProductDetails.asp?ProductCode=TTL232R

Digital IO connections -- rev 4

Page 229

Special purpose pins

The LPC1756 supports a number of dedicated functions. Those include 4 UARTs, USB, 2 SSPs, 1
SPI, 2 CAN, 2 I2C, I2S, 2 multi-channel PWMs, Quadrature Encoder, dedicated motor control PWM,
interrupts, timer counter capture and match.

In addition most can be configured with pullups and default to pullups following reset.

Details can be found in NXP's User manual.

Analog connections

4 A/D converters are readily available. 2 more are available, but share the pins with UART0 -- what was
NXP thinking, I have no idea.

1 10 bit DAC is available shared with AD(3) available on the SuperPRO (not on PROplus)

Page 230

On reset or power up the AD pins are configured by software as AD inputs. To change those to
digital IOs, the user must write to the appropriate PINSEL register.

The LPC1756 does support an external reference for the A/D converters, but to use the Arduino
AREF pin a jumper is required (details on the schematic)

Analog Isolation

The rev 6 and 7 boards isolate both GND and power for the analog section using ferrite beads.

to add isolation to rev 4/5 boards -

The LPC17xx series chips AD converter are sensitive to high frequency noise on the analog GND
(Vssa) or on the AD inputs themselves. A symptom that will show up is bits in any bit position
turned on/off when the conversion is done. This makes it hard to average out, but conversion can be
voted on, choosing 2/3 conversions that agree within a few bits. The occurance of these errors is in
less than 1% of the conversions, unless your setup is very noisy.

Another option is to change the analog GND connection on the board. Do this by cutting the trace
on the back side between GND under the crystal and the GND connected to Vssa (shown on the
picture below)

Then connect digital GND to analog GND using a ferrite bead, a convenient place to do this is on the
front side as shown below.

Page 231

Pin limitations

P0.29 and P0.30 direction control must be done in parallel, they can be both outputs or both inputs, but
not mixed.

Power connections -- SuperPRO

The board is shipped with a 2mm power jack compatible with a JST PHR/S2B or SparkFun PRT8671
or various battery packs from SparkFun.

Pads for a Cui PJ-002A or SparkFun PRT-119 power connector are available in the lower left hand
corner.

For both battery and 6V input, 2 pin 0.1" spaced holes are available for wires or headers. When using
the battery connector, total current draw for the board must be limited to 200mA. If you want to use
more currrent, you should install a jumper around the D2 diode (holes are available above D2).

Diode steering allows power to be supplied from a barrel connector from a 6V unregulated source, 5V USB
test connector, or the battery connector. Because of the Schottky diodes, all 3 power sources can be
connected simultaneously. If you are using an unregulated wall transformer, you must check the open
circuit voltage and it MUST be less than 12V.

When the 6V source is used, 5V Arduino shields can be powered from the SuperPRO.

Page 232

http://search.digikey.com/scripts/dksearch/dksus.dll?pname&site=us;lang =en&wt.mc_id=Dxn_US_T091_Catlink;name=455-1165-ND
http://www.sparkfun.com/commerce/product_info.php?products_id=8671
http://www.sparkfun.com/commerce/product_info.php?products_id=119

The schematic below describes this circuit on the SuperPRO

Power connections -- PROplus

The board is shipped with a 2mm power jack compatible with a JST PHR/S2B or SparkFun
PRT8671 or various battery packs from SparkFun.

Pads for a Cui PJ-002A or SparkFun PRT-119 power connector are available in the lower left hand
corner.

For both battery and 6V input, 2 pin 0.1" spaced holes are available for wires or headers. When
using the battery connector, total current draw for the board must be limited to 200mA. If you want
to use more currrent, you should install a jumper around the D2 diode (holes are available above
D2).

Diode steering allows power to be supplied from a barrel connector from a 6V unregulated source, 5V
USB test connector, 5V from a shield or the battery connector. Because of the Schottky diodes, all 3
power sources can be connected simultaneously. If you are using an unregulated wall transformer, you
must check the open circuit voltage and it MUST be less than 12V.

The PROplus only has the 3.3V regulator, so it cannot supply power to a 5V shields.

The schematic below describes this circuit on the PROplus

Page 233

http://search.digikey.com/scripts/dksearch/dksus.dll?pname&site=us;lang =en&wt.mc_id=Dxn_US_T091_Catlink;name=455-1165-ND
http://www.sparkfun.com/commerce/product_info.php?products_id=8671
http://www.sparkfun.com/commerce/product_info.php?products_id=8671
http://www.sparkfun.com/commerce/product_info.php?products_id=119

The full schematic can be seen here

Power connections details

Page 234

The 3.3V regulator can supply 50 mA, with most being used by the LPC2103. The 3.3V connection next
to RESn on the lower power connector is only connected if the shorting pads are shorted (NOT the factory
default).

The analog GND should be used to connect to the GND of analog inputs. Digital and Analog GNDs are
connected together with a small trace, but to minimize noise you should use the analog GND only for
analog signals.

Jumpers and test connector for Program Download

The USB Dongle from Coridium will supply 5V from the USB to power the ARMmite PRO. It also controls
the RESET and BOOT signals to automatically load C or BASIC programs using MakeItC or BASICtools.
Remember, if you load a C program, it will erase the BASIC firmware and you will not be able to load
BASIC programs after that. It is NOT necessary to install the load C jumper when using the USB
Dongle from Coridium.

When using the SparkFun FTDI Basic Breakout Board, a limited amount of power can be supplied from
the BBB, but this is limited to 50 mA and after diode drops, its about 2.8V to the LPC2103. In practice
this will run, but it is outside the part specifications, so it should be limited in use.

Page 235

Also with the SparkFun FTDI Basic Breakout Board to load a C program, the LOAD C jumper needs to be
installed, then removed to run the program. BASIC programs can be loaded and controlled using the
SparkFun board, with no additional steps/jumpers.

An alternative is to use a 2 pin header with a shorting block (pictured below)

Real Time Clock Oscillator

The RTC oscillator of the LPC17xx parts has been resolved. The first generation parts which were shipped
in early 2011 had an unreliable oscillator and this has been corrected by NXP.

A 32 KHz crystal and diode for battery backup with an optional ML2020 rechargeable Li battery.

A Panasonic ML2020H rechargeable battery may be added to keep the real time clock running when
power is removed. The battery is mounted on the back of the board as shown below. The VL2020/HFN
will also work, though it is more expensive and has less power.

Page 236

USB connector option for power and SPI Flash option

The rev 6/7 boards add pads for an optional SPI Serial Flash (note pin 1 location). Also pads for a USB
mini-B connector have been added, this is intended primarily to supply power, and the data lines are
connected to pads. These options can be installed at Coridum for orders of 10 boards or more.

Page 237

Main Clock Crystal option

You can add a 12 MHz crystal with 39pf 0603 load caps, for use as a more accurate clock source.
Locations marked below

Page 238

http://www.digikey.com/product-detail/en/CA-301 12.0000M-C:PBFREE/SER3424-ND/1022143

ARMexpress Pin Diagram

/SOUT 1 Serial Output, RS-232 compatable (active low)

/SIN 2 Serial Input, RS-232 compatable (active low)

ATN 3 connect to DTR with RS-232, when HIGH reset the Node (active high)

/RES 22 TTL level RESET (open collector with 2.7K pullup) (active low)

P0
P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P11
P12
P13
P14
P15

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

PWM3

PWM1, RXD1
PWM2, TXD1
AD0
AD2
AD5
AD1
AD6
AD7
PWM7
PWM5
PWM8

Input/Outputs -- user controlled

0-3.3V level

4mA drive when configured as Outputs

5V tolerant

GND 4,23 Ground (0V)

VDD 24 Power 5-12V input power

Page 239

Alt-VDD 21 Alternate 5-12V input power (for backward compatability)
connection to pin 24 is preferred
reserved for future expansion

Dual Use AD pins

On reset or power up the AD pins are configured as digital IOs on the ARMexpress LITE. When the
BASIC accesses these pins they are changed to analog inputs. After that they will remain analog inputs
until the next reset or power up.

PWM pins

All pins can be used for the software PWM function, and 6 pins can be used for the hardware driven
HWPWM function (HWPWM channels 4 and 6 are not connected).

Page 240

ARMexpress Pin Diagram

/SOUT 1 Serial Output, RS-232 compatable (active low)

/SIN 2 Serial Input, RS-232 compatable (active low)

ATN 3 connect to DTR with RS-232, when HIGH reset the Node (active high)

/RES 22 TTL level RESET (open collector with 2.7K pullup) (active low)

P0
P1
P2
P3
P4

P7
P8
P9
P10
P11
P12
P13
P14
P15

5
6
7
8
9

12
13
14
15
16
17
18
19
20

Input/Outputs -- user controlled

0-3.3V level

4mA drive when configured as Outputs

5V tolerant

P5
P6

10
11

Input/Outputs -- user controlled
open drain when configured as outputs (can only drive low)

GND 4,23 Ground (0V)

VDD 24 Power 5-12V input power

Page 241

Alt-VDD 21 Alternate 5-12V input power (for backward compatability)
connection to pin 24 is preferred
reserved for future expansion

Page 242

DIN rail Pin Description

USB connection shown. Details on the enclosure at OKW enclosures .

The ethernet version is software compatible with the ARMweb, refer to those pages for more information.

The USB version uses the standalone ARMbasic compiler on the PC.

Rev 1

25 pins available to the user, 6 of which can be analog inputs, 8 high current drivers, 3 digital IOs, and 8
flexible IOs

The LPC2138 is used with 512K Flash and 32K of SRAM.

Optional connections to USB, 10Mb Ethernet, or RS-485 (with optional isolation)

Page 243

http://www2.okw.com/okw-static/drawings-pdf/00010390.pdf

 picture shown without screw terminals for clarity

Power Inputs
Board 7-40V DC. This voltage is reduced with a switching regulator for the 3.3V internal board supply.

High Current Driver (ULN2803) 5-50V. This can be a seperate supply from the Board input power, or can be
the same supply. It is a required connection for relay drivers to provide a path for current when the relay coil
is turned off, it does not have to be the power supply for the board in this case, but it can be.

For volume customers the power supply can be stuffed to accept a regulated 3.3V supply directly, this is
done by omitting the switching power supply and adding an appropriate ferrite bead at L5.

Schematic
The schematic is too large to include on this page, but is downloaded into the /Program
files/Coridium/Schematic directory. Is also available here..

Enclosure

OKW B6704100 The kits include custom cutouts for either Ethernet or USB connections. Mechanical
drawing for the enclosure is here ,

All the following options can be configured by the user, by optionally stuffing the through-hole components in
the DIN rail kit. Coridium will configure boards when 10 or more are ordered.

Page 244

http://focus.ti.com/lit/ds/symlink/uln2803a.pdf
http://www.coridiumcorp.com/files/Schematics/DINbase.pdf
http://www.okwenclosures.com/products/okw/railtec-c/zoom/zB6704100.jpg
http://www2.okw.com/okw-static/drawings-pdf/00006710.pdf

6 AD pins
These may configured for 4-20 mA sensors, with resistor dividers, or as digital inputs. These inputs have
diode clamps to 3.3V and GND.

4-20mA sensor --

 load 150 ohm SIP into R17

suggested components
 Bourns 4600X Bussed SIP resistor
 Bourns 4100R Isolated DIP resistor

A/D resistor divider --

 load R15 DIP resistor and R14 SIP with appropriate values

 AD = Vin * R14/(R14+R15)

 Source impedance to AD should be less than 10K.

digital IO --

Page 245

 load R15 with 100 or 1K

digital IO (pulldown)--

 load R15 with 100, R14 with 10K

digital IO (pullup) --

Page 246

 load R15 with 100, R14 with 10K

High Current Drivers
These may use a high sink current driver, or configured as digital IOs with optional pullups or pulldowns

High Current drive --

 This driver can sink a surge current of 500mA upto 50V, this driver is a ULN2803 .

suggested components
 TI ULN2803AN
 Toshiba ULN2803APG
 STmicro ULN2803A

digital IO --

digital IO (pulldown) --

Page 247

http://focus.ti.com/lit/ds/symlink/uln2803a.pdf

digital IO (pullup) --

Flexible IOs
These may be configured as 8 digital IOs (with and without pullup/pulldown), opto-isolated inputs or outputs,
or differential inputs or outputs. They are arranged in 2 groups of 4 so that there can be 2 opto-isolated input
and 2 opto-isolated outputs.

opto-isolated input --

Page 248

suggested components
 Liteon LTV-827
 Fairchild MCT9001
 Toshiba TLP621-2

opto-isolated output --

same components as above, rotated 180 degrees

bidirectional RS-422 driver --

Page 249

suggested components
 National DS75176BN
 TI SN75176AP

bidirectional RS-422 driver with termination --

suggested components
 Bourns 4600 Isolated SIP resistor

digital IO --

Page 250

digital IO (pulldown) --

digital IO (pullup) --

3 digital IOs
These may be configured as staight thru, or with pullups or pulldowns

digital IO --

 shown with 100 ohm series

Page 251

digital IO (pulldown) --

 shown with 10K pulldown and 100 series

digital IO (pullup) --

 shown with 10K pullup and 100 series

RTC options
Rev 3

This revision adds the diode and resistor needed for charging an ML2020 battery. That battery can be
mounted on the backside of the board as illustrated below

Page 252

Rev 2

To connect a battery, remove R23, and use the Vbat via to connect, a resistor-Schottky diode-battery
connection (suggested schematic below)

GND and 3.3V are available on either side of C7

Page 253

A 32 KHz crystal (such as the Citizen CMR200TB32.768KDZFTR) can be connected at Y2, with the
two 22pF startup caps on the bottom/circuit side of the board.

Page 254

Schematics

PDF copies of the schematics are copied into the Program Files/Coridium/Schematics directory when you
install either the BASIC or C tools.

Or you can follow these links to PDF schematics on the Coridium website.

 ARMmite schematic
 ARMmite rev 2 schematic

 ARMmite PRO schematic
 PROplus schematic
 Super PRO schematic

 PROplus / SuperPRO rev 4/5 schematic
 USB dongle schematic

 ARMexpress LITE schematic
 ARMexpress schematic

 ARMexpress Eval PCB
 ARMweb schematic

 ARMweb rev 3 schematic
 DINkit schematic

 DINkit USB board
 DINkit Ethernet board

DXF files are mechanical drawings of the boards, they are also available from these links or in the
Schematics directory.

 ARMmite mechanical
 ARMmite PRO mechanical
 ARMweb mechanical

Page 255

http://www.coridiumcorp.com/files/Schematics/ARMmiteSCH.pdf
http://www.coridiumcorp.com/files/Schematics/ARMmite2SCH.pdf
http://www.coridiumcorp.com/files/Schematics/ARMproSCH.pdf
http://www.coridiumcorp.com/files/Schematics/superSCH.pdf
http://www.coridiumcorp.com/files/Schematics/superSCH.pdf
http://www.coridiumcorp.com/files/Schematics/superSCH4.pdf
http://www.coridiumcorp.com/files/Schematics/Dongle2.pdf
http://www.coridiumcorp.com/files/Schematics/ARMexpLITE.pdf
http://www.coridiumcorp.com/files/Schematics/ARMexp.pdf
http://www.coridiumcorp.com/files/ARMexpEVAL.pdf
http://www.coridiumcorp.com/files/Schematics/ARMweb.pdf
http://www.coridiumcorp.com/files/Schematics/ARMweb3.pdf
http://www.coridiumcorp.com/files/Schematics/DINbase.pdf
http://www.coridiumcorp.com/files/Schematics/DINusb.pdf
http://www.coridiumcorp.com/files/Schematics/DINeth.pdf
http://www.coridiumcorp.com/files/Schematics/ARMmite3.DXF
http://www.coridiumcorp.com/files/Schematics/ARMpro.DXF
http://www.coridiumcorp.com/files/Schematics/ARMweb4.DXF

CPU details

 These are links to detailed documentation for the CPUs used in the ARMexpress and ARMmite products.
These files are at the NXP website. The links may move so if they are broken here, search their site
www.nxp.com

LPC2103 used in ARMmite and ARMexpress LITE and ARMmite PRO

 LPC2103 data sheet

 LPC2103 User manual

LPC2106 used in ARMexpress

 LPC2106 data sheet

 LPC2106 User manual

LPC2138 used in ARMweb

 LPC2138 data sheet

 LPC2138 user manual

LPC1756 used in Super PRO

 LPC1756 data sheet

 LPC1756 user manual

Page 256

http://www.nxp.com/acrobat/datasheets/LPC2101_02_03_3.pdf
http://www.nxp.com/acrobat/usermanuals/UM10161_3.pdf
http://www.nxp.com/acrobat/datasheets/LPC2104_2105_2106_7.pdf
http://www.nxp.com/acrobat/usermanuals/UM10275_1.pdf
http://www.nxp.com/acrobat_download/datasheets/LPC2131_32_34_36_38_4.pdf
http://www.nxp.com/acrobat_download/usermanuals/UM10120_1.pdf
http://www.nxp.com/documents/data_sheet/LPC1759_58_56_54_52_51.pdf
http://www.nxp.com/documents/user_manual/UM10360.pdf

Power On Behavior

Initial Power on conditions

On power up all pins are tri-stated on the ARMexpress or ARMmite.

Restarting the program

If the user has entered a BASIC program into the ARMexpress/ ARMmite, that program will be started when
the power is applied, or restarted when RESET is asserted either with the pushbutton, or from the
BASICtools program via asserting the DTR line (low on ARMmite, high on ARMexpress).

If the user program ends by getting to the last statement of the program or executing an END instruction, the
ARMexpress/ARMmite will power down and await either input on the debug serial port, or a RESET.

Reset and Boot for PRO boards

For the PRO, PROplus and SuperPRO boards when connecting a PC to a board that is running, the reset
and boot control signals will be toggled by the PC. This is a function of Windows and the Drivers. This will
reset the board or possibly put it into a load program state. To avoid this you can disconnect the Reset and
Boot signals from the USB dongle, either by cutting pins or making an adapter using a 6 pin female header
with long pins(available from SparkFun).

Page 257

http://www.sparkfun.com/commerce/product_info.php?products_id=9280

ISP (bootloader) checks

ISP bootloader

To load a C program, the NXP ISP bootloader is invoked. This is also used by the Connection test in TclTerm
and BASICtools.

Connections

Whether its part of the PRO family or has a builtin USB connection, 6 wires make up the primary connection
to an ARM for all Coridium products.

Those connections include power (V+) and GND.

Serial connections to UART0 (TXD0 from the ARM to the PC, RXD0 from PC to the ARM).

RESn is the reset line (active low -- places the device in reset)

Cn is held low on P0.14, P2.10 or P0.1 low during RESET, to place the part in ISP mode, but its normal state
is high.

Controlling these pins from TclTerm and BASICtools

You can use a meter to check the states of these pins.

RESn should normally be a logic 1. And you will see it change to a 0 and back when toggle reset is
selected.

Page 258

Toggle boot will drive Cn low and high (high being the normal state).

Toggle RXD will send a set of characters out to the UART0 of the ARM (it will be visible even on a simple
meter)

force boot will drive Cn low, and can be used to manually put the part into ISP mode. This is done by being
in Char Mode (send 1 character at a time, rather than buffereing up a line), toggle reset, send ?, send
Synchronized. The ARM will echo Synchronized back.

For a Coridium USB dongle these are the expected states of the pins unless you changed the programming
of the FT232RL . On other hardware if the states of pins does not agree with what is expected, check your
wiring. If you see no activity at all, then you may have chose the wrong COM port, or don't have the FTDI
driver installed.

Page 259

ARMexpress Suggested RS232 connection

 For a finer image see ARMexpRS.pdf in your install directory (C:\Program Files\Coridium\Schematics).

Pin 21

On most Parallax boards this line is connected to a regulated 5V supply.

Do not connect a power source greater than 5V directly to pin 21.

When not connected this pin is pulled up to 3.3V by RP1 on the module.

When using MakeItC, this line is pulled low to download a C program, which can be done automatically by
connecting to an NPN transistor with the RTS line on the serial port.

Pin 3

On later revision ARMexpress and ARMexpress LITE a 1K pulldown has been added on the module between
pins 3 and 4 (as pictured below. If your unit does not have this, then a 1K pulldown resistor is required, when
there is no signal on pin 3.

Page 260

Page 261

General Interfacing

Both the ARMexpress and the ARMmite can be directly connected to 5V TTL devices. The output voltage
for these ARM devices ranges from 0.4V to 2.9V when driving upto 4mA of current. Most TTL devices will
recognize these as valid logic levels (normally defined to be 0.8 and 2.0V)

Inputs

The ARMexpress and ARMmite may also be directly connected to 5V TTL outputs. If they are TTL
compatable the voltage levels of the TTL output would normally be (0.4 and 3.4V), though they may go
higher. The inputs for these ARM devices are 5V compatable.

Tieing to Supply lines

The ARMexpress and ARMmite inputs may be connected directly to a GND pin, but if connecting to a fixed
high level, then it may be connected to a 5V supply line with a 1K or greater resistor. This is the same
recommendation for any TTL compatable device. The reason being is that the 5V supply may exceed the 5V
at times.

Interfacing to higher voltages

A resistor divider may be used to connect the ARMexpress and ARMmite to voltages that go higher than 5V.
The picture below shows a connection appropriate for a 24V signal. A 100K resistor is connected from the
input to IO(11) and then an 11K resistor connects IO(11) to GND. This will divide that 24V input to vary
between 0 and 2.4V.

This resistor divider divides the 24V by 10 and also limits the current if that 24V goes higher. The circuit
below shows schematically the connection that was made.

Page 262

The resistors can be varied to handle different voltages. If the voltage to be sensed is susceptible to large
spikes a 5V Zener diode can be connected in parallel with R2 to further protect the ARMmite IO.

Opto-Isolator

Another way to sense large voltages and to isolate the ARMmite from those voltages is to use an
opto-isolator. These devices consist of an LED and a photo-transistor in a single package. They can provide
isolation of 1000s of Volts. Below is a sample circuit. The D2 optional diode should be used if the isolated
voltage to be sensed is an AC voltage. The value of R1 should be chosen depending on the Opto-isolator
spec, with the current through the opto-isolator diode typically being 10 mA.

Page 263

Serial Configuration

 Though we recommend using TclTerm to talk to Coridium ARM products, here are settings for other
terminal programs.

 Any program on the PC that can communicate with a serial port can send or receive data to the ARM. This
would include MSCOMM and Visual BASIC. Also various C's including GCC. Other options include Perl or
Tcl scripts.

 However these programs must be able to control the DTR and RTS lines under user control. If they cannot
refer to the next section. Programs that cannot include Matlab, Hyperterm and Teraterm.

 The TclTerm.tcl is the source for a Tcl program that operates as a terminal emulator for the ARMexpress
family. You can use it if you have access to any of the GPL Tcl interpreters, or a compiled version is
available on the Coridium Support page. The sources are also at the ARMexpress Yahoo Groups Files
Section where you will also find a sample C program (writen for MinGW) that will also communicate with the
ARMexpress family.

Baudrate

 19.2 kbaud, 8 bit, No Parity, 1 stop bit. These settings are controlled by TclTerm, any settings in the
Device Manager are IGNORRED.

End of Line

 expects a LF (line feed),

 CR is currently ignored.

Voltage Levels

 /SOUT, /SIN and ATN (pins 1,2,3) will accept either TTL or RS-232 levels. ATN when high resets the
ARMexpress, and ATN should not be allowed to float. It should either be connected directly to DTR, or some
TTL signal that is LOW or Ground. The /SOUT driver relies on either /SIN or ATN being low to generate the
low going voltage. This allows for full-duplex serial operation.

When TclTerm appears to be deaf

 There are cases where the USB driver and TclTerm get out of sync. This includes when the board is
disconnected from the USB port, and sometimes when the serial configuration is changed. In these cases it
may be necessary to exit TclTerm and then restart it.

TclTerm configuration settings

 The configuration of TclTerm is saved in a file TclTerm.ini. It is written when either it does not exist (when
first installed) or when the configuration is changed by the user. This file is a Tcl source which may be edited
by the user. If it becomes corrupt, delete the file and the default configuration will be restored.

Page 264

USB use with MatLab, Hyperterm, TeraTerm

General Info

 The ARMmite and ARMexpress use the DTR and RTS serial control lines to control programming and reset
for the device. The state chosen allows the ARMmite/express to run and be reset by the push button while
idle (ie. no serial program running).

PC side programs

 Programs on the PC such as Tcl, MSCOMM and GCC allow the control lines to be controlled by the user.
But some pre-compiled programs do not allow this control, such as HyperTerminal, TeraTerm, and MatLab.
This page describes the steps to allow these programs to operate. For now this process must be done
manually.

Useful debugging tool

 Before starting its useful to load a program into the ARMmite/express that will flash the LED and also
continuously send some data out the serial port. Here is one that works well...

Download the latest TclTerm

 In order to be able to communicate with the ARMmite/express after the control lines have been changed,
make sure you are running the latest TclTerm. Versions 1.6 and later have this support.

http://www.coridiumcorp.com/files/TclTerm.zip

 Next, the driver must be changed for the USB serial device. The FTDI D2XX driver must be used. Download
it from the FTDI website.

http://www.ftdichip.com/Drivers/D2XX.htm

Choose the proper version for your operating system, and download and install the driver. The installation
executable may be used, and there are instructions in the Installation Guides on that page.

Configuration Utility

Page 265

http://www.coridiumcorp.com/files/TclTerm.zip
http://www.ftdichip.com/Drivers/D2XX.htm
http://www.coridiumcorp.com/files/TclTerm.zip
http://www.ftdichip.com/Drivers/D2XX.htm

 Next the settings of the serial control lines need to be changed, this requires the MProg utility from FTDI.
Download and install this program.

http://www.ftdichip.com/Resources/Utilities/MProg3.0_Setup.exe

Next download the data files for configuration of the ARMmite or ARMexpress eval PCBs. Unzip these files
and store in a convenient directory (such as C:/Program Files/MProg 3.0a/Templates)

http://www.coridiumcorp.com/files/USBconfig.zip

Setup ARMmite/ARMexpress for MatLab, HyperTerminal, or TeraTerm

 Once a BASIC or C program has been loaded, to configure the board to communicate with these other
PC serial programs. Run the MProg utility. Load the serial File version in. And then reprogram the FTDI
chip. ONLY have 1 ARMmite or ARMexpress plugged in at time when you perform this operation.

Exit this program and close any serial programs such as TclTerm. For this change to take effect, the
ARMmite/express must be disconnected from the PC and reconnected.

Now the ARMmite/express will be idle until the MatLab serial port is open, Hyperterminal, or TeraTerm is
run. Then after those programs are run, to start your BASIC or C program press the RESET pushbutton on
the ARMmite/express.

Change the TclTerm settings for the reconfigured ARMmite/ARMexpress

 In order to be able to change the BASIC program, you will still need to use TclTerm, but it will have to be

Page 266

http://www.ftdichip.com/Resources/Utilities/MProg3.0_Setup.exe
http://www.coridiumcorp.com/files/USBconfig.zip
http://www.ftdichip.com/Resources/Utilities/MProg3.0_Setup.exe
http://www.coridiumcorp.com/files/USBconfig.zip

configured to use the new control line configuration (DTR and RTS inverted).

To return to the original settings. Run the MProg utility. Load the usbMITEnormal.ept or usbEXPnormal.ept
file version in. And then reprogram the FTDI chip. Exit MProg and any serial programs, disconnect and
reconnect ARMmite/express. And set the TclTerm Control option back to Normal.

Page 267

Power

USB Power
The USB specification allows for up to 500 mA at 5V to be supplied to external devices. In many cases this
is limited to 100 mA by the manufacturer of the PC or hub.

ARMexpress and its eval PCB uses approximately 50 mA when running and 10 mA when idle. So it can be
powered from the USB port for programming, without the need for the alternate power supply.

Once the programming is completed, the ARMexpress may be run without a connection to a PC. In this
case an alternate power supply has been provided in the evaluation kit. This supply will generate an
un-regulated 6-8V which is connected to pin 24. Onboard the ARMexpress this will be regulated to 3.3V and
1.8V for use by the ARM CPU.

Initial Power on conditions

On power up all pins are tri-stated on the ARMexpress.

Restarting the program

If the user has programmed the ARMexpress, that program will be started when the power is applied, or
restarted when RESET is asserted either low on the open-collector pin 22, or positive true on the ATN pin.

If the user program ends by getting to the last statement of the program or executing an END instruction, the
ARMexpress will power down and await either input on the debug serial port, or a RESET.

Break operation or STOP
If the user code is running, it can be stopped by a RESET condition. This will normally restart the user code,
but there is a short window (500 msec) where the ARMexpress will wait to see if there is input on the serial
debug port. If the character received on the serial port is ESCAPE (27) or CTL-C (3) then the user program
is prevented from running and the ARMexpress is ready to be reprogrammed. Or the user can restart the
program by typing RUN or using the RUN button in TclTerm.

Smart Power

The USB evaluation board can be powered from either the USB, an external supply or BOTH. Power from the
USB is controlled such that it is turned on by the USB controller. Power to the ARMexpress can also come
from the external power supply and these are controlled to allow both USB and the power supply to be
connected to the device at the same time.

The power connector is a 2.5mm, which is compatable with the Cui PP-002B part.

Parallax STAMP compatability

The Parallax STAMP products operate from a 5V supply. This can come from an unregulated input on pin
24, or from a regulated 5V supply on pin 21. The ARMexpress is backward compatable with both these
connections, but for new designs it is recommended that power be supplied on pin 24. The voltage required
is 4.5V or greater on pin 24, or 5V on pin 21. Also for future expansion, pin 21 should not be connected for
new designs. The maximum voltage that may be applied to either pin 24 is 16V, but this is not a
recommended continuous voltage, as it will cause extra heat to be generated by the ARMexpress onboard
voltage regulators. For this reason the recommended maximum is 9V. When using an unregulated supply
not supplied by Coridium, care should be excercised, as the current draw of the ARMexpress is low and the
voltage will often be much higher than the rated voltage. The user should ensure that this voltage does not
exceed the limit of 16V.

Page 268

Timing

The oscillator
The ARMexpress uses a ceramic resonator for the timing element. It is accurate for 1%. It is used for timing
of operations of SERIN, SEROUT, OWIN, OWOUT, PULSEIN, PULSEOUT, and COUNT.

Other operations such as I2CIN, I2COUT, SPIIN, SPIOUT, SHIFTIN, SHIFTOUT, PWM and FREQOUT are
"bit-banged" loops that are calibrated to the speed of the CPU.

Interupts

The serial port for control and the timer are the only interupts currently used by the ARMexpress. The service
routines for these actions have been minimized so that the user program is only interupted for TBD
microseconds.

Operations that require accurate timing will disable the interupts during that critical period. These operations
include OWIN, OWOUT, SERIN and SEROUT. Other operations that would be negatively impacted by an
interupt also disable the interup for a period of time. Those include PULSIN, PULSOUT, PWM, RCTIME and
FREQOUT.

Interupts and User code
When the ARMexpress receives serial input it will interput to copy data into its buffer. This will cause a small
delay in the users program. In most cases this is not noticedable, but may be where user is timing with
TIMER.

User code can cause the serial port to be deaf when running long operations such as FREQOUT or PWM. In
normal operation this should not be a problem.

Page 269

SPI,Microwire

The Serial Peripheral Interface Bus or SPI bus is a very loose standard for controlling almost any digital
electronics that accepts a clocked serial stream of bits. A nearly identical standard called "Microwire" is a
restricted subset of SPI.

SPI is cheap, in that it does not take up much space on an integrated circuit, and effectively multiplies the
pins, the expensive part of the IC. It can also be implemented in software with a few standard IO pins of a
microcontroller.

Many real digital systems have peripherals that need to exist, but need not be fast. The advantage of a serial
bus is that it minimizes the number of conductors, pins, and the size of the package of an integrated circuit.
This reduces the cost of making, assembling and testing the electronics.

A serial peripheral bus is the most flexible choice when many different types of serial peripherals must be
present, and there is a single controller. It operates in full duplex (sending and receiving at the same time),
making it an excellent choice for some data transmission systems.

In operation, there is a clock, a "data in", a "data out", and a "chip select" for each integrated circuit that is
to be controlled. Almost any serial digital device can be controlled with this combination of signals.

SPI signals are named as follows:

 SCLK - serial clock
 MISO - master input, slave output
 MOSI - master output, slave input
 CS - chip select (optional, usually inverted polarity)

Most often, data goes into an SPI peripheral when the clock goes low, and comes out when the clock goes
high. Usually, a peripheral is selected when chip select is low. Most devices have outputs that become high
impedance (switched-off) when the device is not selected. This arrangement permits several devices to talk
to a single input. Clock speeds range from several thousand clocks per second (usually for software-based
implementations), to several million per second.

Most SPI implementations clock data out of the device as data is clocked in. Some devices use that trait to
implement an efficient, high-speed full-duplex data stream for applications such as digital audio, digital signal
processing, or full-duplex telecommunications channels.

On many devices, the "clocked-out" data is the data last used to program the device. Read-back is a helpful
built-in-self-test, often used for high-reliability systems such as avionics or medical systems.

In practice, many devices have exceptions. Some read data as the clock goes up (leading edge), others
read as it goes down (falling edge). Writing is almost always on clock movement that goes the opposite
direction of reading. Some devices have two clocks, one to "capture" or "display" data, and another to clock it
into the device. In practice, many of these "capture clocks" can be run from the chip select. Chip selects can
be either selected high, or selected low. Many devices are designed to be daisy-chained into long chains of
identical devices.

SPI looks at first like a non-standard. However, many programmers that develop embedded systems have a
software module somewhere in their past that drives such a bus from a few general-purpose I/O pins, often
with the ability to run different clock polarities, select polarities and clock edges for different devices.

The interface is also easy to implement for bench test equipment. For example, the classic way to implement
an SPI interface from a personal computer to custom electronics is via a custom cable to the PC's parallel
printer port. The parallel port generates and reads standard TTL logic voltages; +5V is high, ground is low. A
number of helpful people have developed drivers to give access to this port in the most restrictive operating
systems, such as Windows NT (see below), from the least likely environments, such as Visual Basic.

Page 270

http://en.wikipedia.org/wiki/Microwire
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Serial_bus
http://en.wikipedia.org/wiki/Serial_bus
http://en.wikipedia.org/wiki/Clock_signal
http://en.wikipedia.org/wiki/Impedance
http://en.wikipedia.org/wiki/Rising_edge
http://en.wikipedia.org/w/index.php?title=Falling_edge&action=edit
http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/Transistor-transistor_logic

Using the I2C Bus

The physical I2C bus
This is just two wires, called SCL and SDA. SCL is the clock line. It is used to synchronize all data transfers
over the I2C bus. SDA is the data line. The SCL & SDA lines are connected to all devices on the I2C bus.
There needs to be a third wire which is just the ground or 0 volts. There may also be a 5volt wire is power is
being distributed to the devices. Both SCL and SDA lines are "open drain" drivers. What this means is that
the chip can drive its output low, but it cannot drive it high. For the line to be able to go high you must provide
pull-up resistors to the 5v supply. There should be a resistor from the SCL line to the 5v line and another from
the SDA line to the 5v line. You only need one set of pull-up resistors for the whole I2C bus, not for each
device, as illustrated below:

The value of the resistors should be from 1.8K (1800 ohms) to 4.7k (4700 ohms). It depends on the length of
the I2C bus, the longer the bus, the smaller value should be used. If the value is too large, the rise time of the
signals will be too slow and the bus may not work properly. If the resistors are missing, the SCL and SDA
lines will always be low - nearly 0 volts - and the I2C bus will not work.

Masters and Slaves
The devices on the I2C bus are either masters or slaves. The ARMexpress as a master is always the device
that drives the SCL clock line. The slaves are the devices that respond to the master. A slave cannot initiate
a transfer over the I2C bus, only a master can do that. There can be, and usually are, multiple slaves on the
I2C bus, however there is normally only one master. ARMexpress does not support multiple masters. Slaves
will never initiate a transfer. Both master and slave can transfer data over the I2C bus, but that transfer is
always controlled by the master.

The I2C Physical Protocol
When the ARMexpress wishes to talk to a slave it begins by issuing a start sequence on the I2C bus. A start
sequence is one of two special sequences defined for the I2C bus, the other being the stop sequence. The
start sequence and stop sequence are special in that these are the only places where the SDA (data line) is
allowed to change while the SCL (clock line) is high. When data is being transferred, SDA must remain
stable and not change whilst SCL is high. The start and stop sequences mark the beginning and end of a
transaction with the slave device.

Data is transferred in sequences of 8 bits. The bits are placed on the SDA line starting with the MSB (Most
Significant Bit). The SCL line is then pulsed high, then low. Remember that the chip cannot really drive the
line high, it simply "lets go" of it and the resistor actually pulls it high. For every 8 bits transferred, the device
receiving the data sends back an acknowledge bit, so there are actually 9 SCL clock pulses to transfer each
8 bit byte of data. If the receiving device sends back a low ACK bit, then it has received the data and is ready
to accept another byte. If it sends back a high then it is indicating it cannot accept any further data and the

Page 271

master should terminate the transfer by sending a stop sequence.

How fast?
ARMexpress runs in Fast mode at approximately 380 KHz.

I2C Device Addressing
All I2C addresses are either 7 bits or 10 bits. The use of 10 bit addresses is rare and is not covered here. All
of our modules and the common chips you will use will have 7 bit addresses. This means that you can have
up to 128 devices on the I2C bus, since a 7bit number can be from 0 to 127. When sending out the 7 bit
address, we still always send 8 bits. The extra bit is used to inform the slave if the master is writing to it or
reading from it. If the bit is zero are master is writing to the slave. If the bit is 1 the master is reading from the
slave. The 7 bit address is placed in the upper 7 bits of the byte and the Read/Write (R/W) bit is in the LSB
(Least Significant Bit).

The placement of the 7 bit address in the upper 7 bits of the byte is a source of confusion for the newcomer.
It means that to write to address 21, you must actually send out 42 which is 21 moved over by 1 bit. It is
probably easier to think of the I2C bus addresses as 8 bit addresses, with even addresses as write only, and
the odd addresses as the read address for the same device.

The I2C Software Protocol
The first thing that will happen is that the master will send out a start sequence. This will alert all the slave
devices on the bus that a transaction is starting and they should listen in incase it is for them. Next the
master will send out the device address. The slave that matches this address will continue with the
transaction, any others will ignore the rest of this transaction and wait for the next. Having addressed the
slave device the master must now send out the internal location or register number inside the slave that it
wishes to write to or read from. This number is obviously dependant on what the slave actually is and how
many internal registers it has. Some very simple devices do not have any, but most do. Having sent the I2C
address and the internal register address the master can now send the data byte (or bytes, it doesn't have to
be just one). The master can continue to send data bytes to the slave and these will normally be placed in
the following registers because the slave will automatically increment the internal register address after each
byte. When the master has finished writing all data to the slave, it sends a stop sequence which completes
the transaction. So to write to a slave device:
1. Send a start sequence
2. Send the I2C address of the slave with the R/W bit low (even address)
3. Send the internal register number you want to write to
4. Send the data byte
5. [Optionally, send any further data bytes]
6. Send the stop sequence.

Reading from the Slave
This is a little more complicated - but not too much more. Before reading data from the slave device, you
must tell it which of its internal addresses you want to read. So a read of the slave actually starts off by
writing to it. This is the same as when you want to write to it: You send the start sequence, the I2C address
of the slave with the R/W bit low (even address) and the internal register number you want to write to. Now
you send another start sequence (sometimes called a restart) and the I2C address again - this time with the
read bit set. You then read as many data bytes as you wish and terminate the transaction with a stop
sequence. So to read the compass bearing as a byte from the CMPS03 module:
1. Send a start sequence
2. Send the I2C address of the slave with the R/W bit low (even address)
3. Send the internal register number you want to read from.
4. Send a start sequence again (repeated start)

Page 272

2. Send the I2C address of the slave with the R/W bit high (odd address)
6. Read data byte from the slave device. (may be repeated depending on the slave capabilities)
7. Send the stop sequence.

The bit sequence will look like this:

Wait a moment
The ARMexpress does not support slaves that use clock stretching. The result is that erroneous data is read
from the slave. Beware! Luckily this function is relatively rare these days.

Example Master Code
DIM A$(10)

I2CIN 1,$30,$10, [STR A$ \10] ' read 10 bytes from slave $30 register $10

connected on pins 1,2

I2CIN 5,$40,$20, [X] ' read a single byte from slave $40 register

$20 on pins 5,6

FOR I=0 TO 9

 A$(I) = $30 + I
NEXT I

I2COUT 1,$30,$10, [STR A$ \10] ' send 10 bytes toslave $30 register $10

connected on pins 1,2

X=$55

I2COUT 5,$40,$20,[X] ' send a single byte to slave $40 register $20

on pins 5,6

I2COUT 5,$50,$20,[$AA] ' send $AA to slave $50 register $20 on pins

5,6

Easy isn't it?

The definitive specs on the I2C bus can be found on the Philips website. Its currently here but if its moved
you'll find it easily be googleing on "i2c bus specification".

Page 273

http://www.semiconductors.philips.com/acrobat/literature/9398/39340011.pdf

ARM Peripheral Use

The ARM peripheral bus

Timer0 free running micro-second counter (TIMER command)
Timer1 used for ON TIMER interrupt
Timer1, Timer2 and Timer3 used for HWPWM on ARMmite or ARMexpress LITE
Uart0 UART
Uart1 Not Used
PWM used when HWPWM is engaged
I2C Not Used
SPI reserved
RTC used for time-keeping

In Idle just the CPU clock stops and any interrupt will wake it.

Page 274

Tables

Tables
 ASCII Character Codes

Page 275

http://www.coridiumcorp.com

ASCII Character Codes

ARMbasic uses the standard "ASCII extended" character set. The compiler uses the character set values
32 to 126 which corresponds to SPACE through TILDA.

Characters outside this range may have a special meaning and are interpreted by the terminal emulation
program that is controlling the ARMexpress. Those would include BACKSPACE, TAB, CR and LF. These
characters cause changes in the stream of characters going to or from the ARMexpress module. These
characters may be interpreted differently on a PC vs. a Mac.

Two codes XON and XOFF are used for flow control. When a large ARMbasic program file is sent to the
ARMexpress module, the module may require a delay when writing code into Flash memory. During these
writes of code to Flash, an XOFF character will be sent to the PC that indicates that the PC should pause
sending data. After the block is written (about 0.4 second) an XON will be sent to resume communication.

However when using SERIN or SEROUT, there is no special interpretation of characters, so all codes 0 to
255 may be sent without any change.

 Dec Hex Meaning Dec Hex Meaning

 000 000 NUL (Null char.)
 001 001 SOH (Start of Header)
 002 002 STX (Start of Text)
 003 003 ETX (End of Text)
 004 004 EOT (End of Transmission)
 005 005 ENQ (Enquiry)
 006 006 ACK (Acknowledgment)
 007 007 BEL (Bell)
 008 008 BS (Backspace)
 009 009 HT (Horizontal Tab)
 010 00A LF (Line Feed)
 011 00B VT (Vertical Tab)
 012 00C FF (Form Feed)
 013 00D CR (Carriage Return)
 014 00E SO (Shift Out)
 015 00F SI (Shift In)
 016 010 DLE (Data Link Escape)
 017 011 DC1 (XON)
 018 012 DC2 (Device Control 2)
 019 013 DC3 (XOFF)
 020 014 DC4 (Device Control 4)
 021 015 NAK (Negative Ack)
 022 016 SYN (Synchronous Idle)
 023 017 ETB (End of Trans. Block)
 024 018 CAN (Cancel)
 025 019 EM (End of Medium)
 026 01A SUB (Substitute)
 027 01B ESC (Escape)
 028 01C FS (File Separator)
 029 01D GS (Group Separator)
 030 01E RS (Request to Send)
 031 01F US (Unit Separator)
 032 020 SP (Space)
 033 021 ! (exclamation mark)
 034 022 " (double quote)
 035 023 # (number sign)
 036 024 $ (dollar sign)

 064 040 @ (AT symbol)
 065 041 A
 066 042 B
 067 043 C
 068 044 D
 069 045 E
 070 046 F
 071 047 G
 072 048 H
 073 049 I
 074 04A J
 075 04B K
 076 04C L
 077 04D M
 078 04E N
 079 04F O
 080 050 P
 081 051 Q
 082 052 R
 083 053 S
 084 054 T
 085 055 U
 086 056 V
 087 057 W
 088 058 X
 089 059 Y
 090 05A Z
 091 05B [(left bracket)
 092 05C \ (back slash)
 093 05D] (rightbracket)
 094 05E ^ (caret)
 095 05F _ (underscore)
 096 060 `
 097 061 a
 098 062 b
 099 063 c
 100 064 d

Page 276

 037 025 % (percent)
 038 026 & (ampersand)
 039 027 ' (single quote)
 040 028 ((left parenthesis)
 041 029) (right parenthesis)
 042 02A * (asterisk)
 043 02B + (plus)
 044 02C , (comma)
 045 02D - (minus or dash)
 046 02E . (dot)
 047 02F / (forward slash)
 048 030 0
 049 031 1
 050 032 2
 051 033 3
 052 034 4
 053 035 5
 054 036 6
 055 037 7
 056 038 8
 057 039 9
 058 03A : (colon)
 059 03B ; (semi-colon)
 060 03C < (less than)
 061 03D = (equal sign)
 062 03E > (greater than)
 063 03F ? (question mark)

 101 065 e
 102 066 f
 103 067 g
 104 068 h
 105 069 i
 106 06A j
 107 06B k
 108 06C l
 109 06D m
 110 06E n
 111 06F o
 112 070 p
 113 071 q
 114 072 r
 115 073 s
 116 074 t
 117 075 u
 118 076 v
 119 077 w
 120 078 x
 121 079 y
 122 07A z
 123 07B { (left brace)
 124 07C | (vertical bar)
 125 07D } (right brace)
 126 07E ~ (tilde)
 127 07F DEL (delete)

Page 277

Support

Support
 How to contact the developers
 How to report a bug
 Contributors

Page 278

http://www.coridiumcorp.com

How to contact the developers

The GCC compiler is part of the GNU project.

MakeItC and ARMbasic are products of Coridium Corp.

 www.coridiumcorp.com

Tech Support monitors the following groups.

 groups.yahoo.com/group/ARMexpress
 groups.yahoo.com/group/gnuarm
 groups.yahoo.com/group/lpc2000

Coridium has done custom ports of ARMbasic to other platforms.

 techsupport@coridiumcorp.com

See also

 Reporting a bug

Page 279

http://www.coridiumcorp.com
http://tech.groups.yahoo.com/group/ARMexpress/
http://sourceforge.net/forum/?group_id=122342
http://sourceforge.net/forum/?group_id=122342
mailto:techsupport@coridiumcorp.com

How to report a bug

 Before reporting a bug, try to make sure it's a bug in Coridium code and not a bug in your own code. Try to
write a small test that reproduces the problem you are encountering. Read any relevant documentation. If you
show people that you have tried to solve your own problem, rather than immediately running for help, you will
be more likely to find people willing to help you.

 Be as specific as you can - "The FREQOUT runtime library function fails when it is called with a value of
1234" is much better than "It crashes".

 The first place to go in the case you believe you've encountered a bug is
groups.yahoo.com/group/ARMexpress

 If you have isolated a compiler bug completely, and you have steps to reproduce it and a small piece of
sample code, you can also file a bug report with tech support at support @coridiumcorp.com.

 DO NOT file general "it doesn't work!" bug reports in the groups.yahoo.com/group/ARMexpress system.
Only isolated, reproducible bugs should be posted there.

Page 280

http://www.yahoo-groups.ARMexpress.com
http://sourceforge.net/tracker/?group_id=122342&atid=693196
http://www.yahoo-groups.ARMexpress.com

Contributors

MakeItC was developed by Coridium to support its own GCC efforts in the development of the ARMbasic
compiler. MakeItC will continue to be expanded and refined as needs exist. Coridium does entertain
suggestions for feature enhancements to MakeItC.

MakeItC is written in Tcl, a cross-platform language. Coridium will help others port MakeItC to other
systems, but it is beyond our capabilities and expertise to port or support platforms other than Windows.

A number of utilities have been used to produce the ARMexpress system.

Freewrap is used to generate TclTerm from a Tcl/Tk script (source available from Coridium website).

Winarm is the basis for the gcc compiler.

A freeware grep from Tim Charron.

Page 281

	Table of Contents
	Getting Started
	Install Software
	Connect USB
	Connect USB to ARMmite PRO
	Setting up MakeItC
	Runnning the Sample C program
	MakeItC features
	Trouble Shooting

	The Compiler
	About
	C Dialect options
	ARM options
	Precompiled Headers
	C Implementation
	C Extensions
	C License
	Runtilme Objects
	Notices

	MakeItC Operation
	Libraries
	Communication Library
	getc
	gets
	printf
	putchar
	puts
	sprintf

	Math Library
	atanf
	ceilf
	cosf
	fabsf
	floorf
	frexpf
	modf
	sinf
	tanf
	tanhf

	mem Library
	memchr
	memcmp
	memcpy
	memmove
	memset

	string Library
	islower
	isupper
	strcat
	strchr
	strcmp
	strcpy
	strcspn
	strlen
	strncat
	strncmp
	strncpy
	strrchr
	strstr
	tolower
	toupper

	string convert Library
	atoh
	atoi

	min IO - obsolete
	getCh
	getStr
	printDec
	printHex
	printStr
	str2dec
	str2hex

	Sample Programs
	Hardware Library
	Pin Controls
	DIR
	HIGH
	IN
	INPUT
	LOW
	OUTPUT

	Hardware Functions
	AD
	configAD
	COUNT
	DIGITAL
	HWPWM
	I2CIN
	I2COUT
	I2CSPEED
	OWIN
	OWOUT
	PULSIN
	PULSOUT
	PWM
	RCTIME
	RXD
	SERbaud
	SERIN
	SERINtimeout
	SEROUT
	setbaud
	SHIFTIN
	SHIFTOUT
	SPIIN
	SPImode
	SPIOUT
	TIMER
	TXD

	Time Functions
	DAY
	HOUR
	MINUTE
	MONTH
	SECOND
	TIMER
	WAIT
	WEEKDAY
	YEAR

	Alphabetical Function List
	AD
	configAD
	COUNT
	DAY
	DIGITAL
	DIR
	HIGH
	HOUR
	HWPWM
	I2CIN
	I2COUT
	I2CSPEED
	IN
	INPUT
	LOW
	MINUTE
	MONTH
	OUTPUT
	OWIN
	OWOUT
	PULSIN
	PULSOUT
	PWM
	RCTIME
	RXD
	SECOND
	SERBAUD
	SERIN
	SERINtimeout
	SEROUT
	setbaud
	SHIFTIN
	SHIFTOUT
	SPIIN
	SPImode
	SPIOUT
	TIMER
	TXD
	WAIT
	WEEKDAY
	YEAR

	Hardware Specs
	ARMmite Pin Diagrams
	ARMmite PRO Pin Diagrams
	BASICboard Pin Diagram
	SuperPRO Pin Diagrams
	ARMexpress LITE Pin Diagram
	ARMexpress Pin Diagram
	DINrail Pin Diagrams
	Schematics
	CPU details
	Power On Behavior
	ISP checks
	Suggested RS232 connection
	TTL and other interfacing
	Serial Configuration
	USB use with MatLab, Hyperterm, TeraTerm
	Power
	Timing
	SPI,Microwire
	Using the I2C Bus
	ARM Peripheral Use

	Tables
	ASCII Character Codes

	Support
	How to contact the developers
	How to report a bug
	Contributors

